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We now give a formula giving the number of essentially different diagrams

with one node and only multiplicities less than m, that can be spliced to a

component of multiplicity m.

Proposition. The number is:

Lp (m/g) +L E 1

q\m 1 C/j ^ /?! - 1 q\(m-p),q>\

where p (/?) is the number of integer partitions of n.

Proof. In such a diagram at most one dot appears, with at the node a

weight ^ 2. The number of edges emerging from the node must be at least 3.

There is at most one weight > 1. These are consequences of the algebraicity
condition. The splice condition demands that the total linking number of the

other components with the splice component equals m. The formula is now
a matter of counting.

For m ^ 15 we obtain:

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

number 0 2 4 9 12 22 27 42 54 76 91 134 159 211 263

This can be regarded as an upperbound on the number of symbols (such as

A, W*, etc.) needed to give names to all singularities of corank m.

4. The spectrum of a plane curve singularity

4.1. In this section we compute the spectrum of a plane curve singularity
from the EN-diagram and we prove a splice formula for spectra. This will be
needed in the next section, where we look at several invariants within a series.
First we need to define a number of polynomials.

4.2. We denote by F the Milnor fibre of a plane curve singularity /.
Definition.

A0 (t) char. pol. of H0(h) : H0{F) -> H0(F)

Ai (0 char. pol. of Hx (h) :Hl(F)-> Hx (F)

A*(0 - A^O/AoWeQCO
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Recall that Hq(F) and HX(F) have ranks d and p, respectively, where d equals
the number of connected components and \x the Milnor number.

We will also need the following polynomials. Let h*: H{(F) -» H\(F) be

the algebraic monodromy.

Definition:

(a) A1 is the characteristic polynomial of h* |Ker(/z* -1), where N is a

common multiple of the order of the eigenvalues of h*,
(b) A' is the characteristic polynomial of h*\lm(H\(dF) H\{F)).
The roots of A1 are the eigenvalues of the 2 x 2-Jordan blocks of /z*.

Observe that all polynomials defined above can be obtained easily from the

EN-diagram, cf. [EN], section 11 and [Ne].

4.3. The spectrum of a holomorphic function germ is a set of rational
numbers with integral multiplicities, denoted as DaeQ«a(oO (an element of
the free abelian group on Q), which can be regarded as logarithms of the
eigenvalues of the algebraic monodromy.

In the isolated singularity case we have that Aj(0 na 0~exp(27t/a))v
In the case of plane curve singularities, the spectrum numbers a satisfy

- 1 < a < 1, so for each eigenvalue X ^ 1 there are two possible a's with
X exp(27i/a).

4.4. We follow [St] for a brief description of the spectrum. For details we

refer to this source. Let /: (Cn+l, 0) -> (C, 0) be non-zero holomorphic function

germ, and denote by Fits Milnor fibre. The reduced cohomology groups
H*(F) H*(F; C) carry a canonical mixed Hodge structure. The semi-simple

part Ts of the monodromy acts as an automorphism of this mixed Hodge

structure, and in particular it preserves the Hodge filtration Write

GrV Sfp/ ff and let sp be the dimension of Gr^r.There are rational
numbers apj with 1 ^j^sp,n-p - 1 < apj ^ n - p such that

Sp

det(t Id - Ts; Grpy)exp( —27traw-))
I

Now we define Sp„(//*(F;C), Ts)£y(aw-) and:

Sp(/) t (- l)"-*Spfl(//*(iO, ^
k 0

It is clear that the spectrum is a finer invariant than the characteristic

polynomial. Steenbrink has proved for instance that the spectrum distinguishes
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all quasi-homogeneous isolated singularities (not only curves). But already

for plane curves the spectrum is not a complete invariant of the topological

type. Details of these facts can be found in [SSS].

4.5. Example. Consider f(x,y) xy(y2 - x3) and g(x,y) xy(y-x5).
Then / and g have the same integral monodromy (see [MW]), their

characteristic polynomial is Aj (/-1) (C1 -1). But

4.6. In [LS] a method is given to compute the spectrum of a reduced curve

singularity from the resolution graph. However, the non-reduced case follows
by the same methods. The results are closely related to those of Neumann on
the equivariant signatures of the isometric structure on Hi (F; C) given by the

monodromy and the sesquilinearized Seifert form, see [Ne]. Below we combine
the results of [LS] and [Ne] to obtain a purely topological method to compute
the spectrum.

For a root of unity X the signature o^ is defined in [Ne] and computed
as the sum of the of all the splice components. Consider a (very general)
splice component:

For the moment, put mt 0 for ie{k + 1,...,«}; so

m • • • âj - • • anmj

is the multiplicity of the central node. Choose integers ß/(l^yC«) with
ßyai - "àj"' an 1 (mod a,-) and put Sj (mj - ßym)/ay.

Remark. The numbers Sj are, modulo m, equal to the multiplicities of
the neighbour vertices in the resolution graph.

For a real number x, let {x} be the fractional part of x, and let

Sp(g)

wuu«
ll) + (ll)

ie{0,1,2,3,4,5}



128 R. SCHRAUWEN

(<.v>)
{a} if x$Z

2

0 if xeZ
4.7. Proposition. Write X exp(2nip/q) with g.c.d. (p,q) - 1. Then

we have (see Neumann [Ne]):

co
0 if q does not divide m,

2 X 1=
i ((siP/q)) tf Q divides m.

4.8. For X a root of unity, let b0>x, bx, b[, b[ be the multiplicities of X as

a root of A0, Al5 A1, A', respectively (these polynomials have been defined
in section 4.2) Let o] be the signature as computed above. Write
e(a) exp(27ua). Sp (/) denotes the spectrum of /.

Theorem. Sp(/) £/za(a) with:

na

(be{a) + b'e{^ - Oe(a))/2

r - 1 (r # branches)

ife{a) — é(a) + Ge(a))/^ ~ ^0,e(a)

if - 1 < a < 0

if a 0

if 0 < a < 1

Proof. The proposition is a translation of the results of [LS], extended

to the case of non-reduced singularities. The difference with [LS] is, that the

roots of A', coming from the boundary, must be added to the weight one part,
and the roots of A0 must be subtracted from the weight zero part. In the

language of [Ne]: The and the -A^ part contribute to the negative

(weight 1) spectrum numbers, the A[ part contributes to the positive

(weight 0) spectrum numbers. The pairs of eigenvalues in the 2 x 2-Jordan

blocks are evenly distributed among the positive and negative parts. The roots
of A0 give only weight 0 spectrum numbers and they have negative

multiplicity.

4.9. A point which may cause confusion is the fact that in the definition of
spectrum reduced (co)homology is used. Therefore we define

Sp*(/) Sp(/) - (0). It is now possible to compare Sp* with A*: If
Sp*(Z) tan«(a)'then AW) ILcT-eCa))""-

Example. The A„ singularity has Sp* - |-j - (0). Recall that its

A* equals (t2 - 1)_1. Dœ has spectrum Sp (0), so Sp* 0 ('empty'). Let

f(x,y) (y2-x3) (y3-x2) be the A'Campo singularity. Then:
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&*</>-( 4)+2(-£)+2(-sMs)
+ 2(^) + (i)'

As with all isolated singularities, this spectrum is symmetrical (i.e. if (a) is in

the spectrum, then so is — a)). This is not the case with non-isolated

singularities. The asymmetry comes from the fact that the Milnor fibre can

have more than one connected component and from the fact that the

monodromy possibly acts non-trivially on the boundary of F. Both can be seen

in:

Sp*(x2y2) i)-(i)-2>

Observe that the A* of x2y2 is just 1, as with Dœ.

4.10. The À He behaves well under splicing: it is the product of the A* of the

splice components. Our topological way of looking at spectra asks for a
formula of splicing spectra. It appears that Sp* Sp - (0) is almost additive.

Example. In the example above we computed the spectrum of the

A'Campo singularity. Both splice components are isomorphic to that of the
non-isolated singularity x2(y2 -x3), which has spectrum:

Sp,-("i) + (""^) + (^)
(iT(

So we have to add both spectra, but instead of 21 — — 1 we have(4)
This is the result of the new edge in the EN-diagram, giving

a new 2 x 2-block.

4.11. Theorem. Let L be the result of splicing L' and L" along
components S' and S'\ respectively. Let m'(m") be the multilink
multiplicity of S'(S") and put q g.c.d.(m', m"). Then

q=\
Sp*(L) Sp*(Z/) + Sp*(L") + (i/q) — — i/q)

i 1
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Proof. If q 1 the theorem is clear. Now suppose q > 1. Consider the
behaviour of the polynomials A05A! and A' under this splice operation.
Splicing introduces a new edge E which contributes to A1 with a factor
tq - 1. This introduces new 2 x 2-Jordan blocks. Both splice components

have X) • / —I in their spectrum (coming from A'). But, as both eigen-
\ QJ

values in a 2 x 2-block are of different weight, L has X L / — I + — I

\ Q) \q)
instead of the sum of both parts. It is clear from theorem 4.8 that all other

parts of the spectra of L' and L" have to be added.

5. Invariants in the case
THAT / HAS ONLY TRANSVERSAL Ax SINGULARITIES

In this section we describe the topology and equation of a topological series

that belongs to a non-isolated singularity with only transversal Ai
singularities.

Throughout this section, / e J? is of the form f f\ • • • f2rg, with
irreducible and g reduced. The critical set of / is

E Zj u • • • u Zr, and the transverse type of / along E/ is Ax. For all

ze{l,...,r}, we have numbers N0i and ct as defined in section 3.3. Let
Ni > Noi (1 ^ ^ r). According to theorem 3.4, a typical element of the series

belonging to / has the topological type (EN-diagram) T*:

V- -Aii.

That is: each arrow of the EN-diagram T of / belonging to a double

component, is replaced in the way described in theorem 3.4. So varying the Ni
will give us the complete series belonging to /.

The following two propositions are easy consequences of theorem 3.4. Let

N (Nu Nr) and let fN have topological type T*.

5.1. Proposition. Let A*[/] and A*[/tv] be the A* of f and

fN respectively. Then:

A, [/;V] (o A* in in n (A+<. -(-iro.
/= 1
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