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ISOLATED PLANE CURVE SINGULARITIES 125

We now give a formula giving the number of essentially different diagrams
with one node and only multiplicities less than 7, that can be spliced to a com-
ponent of multiplicity m.

PROPOSITION. The number is:

Ypm/g) + ) Y p(m-pvg) — 1

qlm 1<p<m—1 qlm-p),g>1

where p (n) is the number of integer partitions of n.

Proof. 1In such a diagram at most one dot appears, with at the node a
weight > 2. The number of edges emerging from the node must be at least 3.
There is at most one weight > 1. These are consequences of the algebraicity
condition. The splice condition demands that the total linking number of the
other components with the splice component equals m. The formula is now
a matter of counting. L[]

For m < 15 we obtain:

‘ m |1|2,314‘5‘6|7|8 9110\11[12{13'14‘15‘

’ number IO|2|4’9|12.22!27|42’54t76|91 [134|159|211‘263l

This can be regarded as an upperbound on the number of symbols (such as
A, W#, etc.) needed to give names to all singularities of corank m.

4. THE SPECTRUM OF A PLANE CURVE SINGULARITY

4.1. In this section we compute the spectrum of a plane curve singularity
from the EN-diagram and we prove a splice formula for spectra. This will be
needed in the next section, where we look at several invariants within a series.
First we need to define a number of polynomials.

4.2.  We denote by F the Milnor fibre of a plane curve singularity f.
Definition.
Ao () = char. pol. of Hy(h): Hy(F) = Hy(F) ,
Ay (¢) = char. pol. of H,(h): H,(F) = H,(F) ,
Ax(t) = A1)/ Ao(2) € Q(2)
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Recall that Hy(F) and H, (F) have ranks d and p, respectively, where d equals
the number of connected components and p the Milnor number.

We will also need the following polynomials. Let A, : H,(F) = H,(F) be .
the algebraic monodromy.

Definition:
(@) A'! is the characteristic polynomial of h*|Ker(h1,,§' —1), where N is a
common multiple of the order of the eigenvalues of /.,

(b) A’ is the characteristic polynomial of hy|Im(H;(OF) — H,(F)).

The roots of A! are the eigenvalues of the 2 x 2-Jordan blocks of /.
Observe that all polynomials defined above can be obtained easily from the
EN-diagram, cf. [EN], section 11 and [Ne].

4.3. The spectrum of a holomorphic function germ is a set of rational
numbers with integral multiplicities, denoted as Y, wcq Mo (@) (an element of
the free abelian group on Q), which can be regarded as logarithms of the eigen-
values of the algebraic monodromy.

In the isolated singularity case we have that A,(¢) =[], (t—expQnria))ne.
In the case of plane curve singularities, the spectrum numbers o satisfy
— 1 < a <1, so for each eigenvalue A # 1 there are two possible a’s with
A = exp(mia).

4.4. We follow [St] for a brief description of the spectrum. For details we
refer to this source. Let f: (C"*1, 0) — (C, 0) be non-zero holomorphic func-
tion germ, and denote by F'its Milnor fibre. The reduced cohomology groups
H*(F) = H*(F; C) carry a canonical mixed Hodge structure. The semi-simple
part 7, of the monodromy acts as an automorphism of this mixed Hodge
structure, and in particular it preserves the Hodge filtration &. Write
Gr’y= &P/ %P+1 and let s, be the dimension of Gr”.There are rational
numbers a,; with 1 <j<s,,n —p — 1< a, <n— p such that

Sp
det(¢-1d — Ty; Gr”’») = [] (¢ — exp(—2miay)))
j=1
Now we define Sp,(H*(F;C), 7, T;) = Y, Y (o)) and:
Sp(f) = Y (=) *Sp,(H*(F), &, T)
k=0

It is clear that the spectrum is a finer invariant than the characteristic
polynomial. Steenbrink has proved for instance that the spectrum distinguishes
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all quasi-homogeneous isolated singularities (not only curves). But already
for plane curves the spectrum is not a complete invariant of the topological
type. Details of these facts can be found in [SSS].

4.5. Example. Consider f(x,») = xy(y2—x3) and g(x, y) = xy(y—x°).
Then f and g have the same integral monodromy (see [MW]), their
characteristic polynomial is A; = (£—1) (¢! —1). But

Sp(/) ¥ ( i ) ' ( i )
p — — -
ie{0,1,2,3,4,6) 11 11

[ I
Sp(g) = ) (———) + (—)
ie{0,1,2,3,4,5) 11 11

4.6. In [LS] a method is given to compute the spectrum of a reduced curve
singularity from the resolution graph. However, the non-reduced case follows
by the same methods. The results are closely related to those of Neumann on
the equivariant signatures of the isometric structure on H,(F'; C) given by the
monodromy and the sesquilinearized Seifert form, see [Ne]. Below we combine
the results of [LS] and [Ne] to obtain a purely topological method to compute
the spectrum.

For a root of unity A the signature ¢, is defined in [Ne] and computed
as the sum of the o, of all the splice components. Consider a (very general)

splice component:

\ / )
wzk\\
mk)

For the moment, put m; = 0 for ie{k+ 1,...,n}; so

m = Z oy v C 0L,

is the multiplicity of the central node. Choose integers B;(1 <j < n) with

Biay - - &j o, =1 (moda;) and put s; = (m; —B,m)/0,.

Remark. The numbers s; are, modulo m, equal to the multiplicities of
the neighbour vertices in the resolution graph.

For a real number x, let {x} be the fractional part of x, and let
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1
() = 5—{x} if x¢Z
0

if xeZ

4.7. PROPOSITION. Write A = exp(2nip/q) with g.c.d. (p,q) = 1. Then
we have (see Neumann [Ne]):

- {0 if q does not divide m,
e) =
' 2 ) ?:1((S,~p/q)) if q divides m. []

4.8. For A a root of unity, let by ,, by, bi, b; be the multiplicities of A as
a root of Ay, Ay, A, A", respectively (these polynomials have been defined
in section 4.2) Let o, be the signature as computed above. Write
e(a) = exp(2mia). Sp(f) denotes the spectrum of f.

THEOREM. Sp(f) = Y. ny(a) with:

(be(a) + be,'(a) - G;(a))/z if —-1<a<0
n, = \r— 1(r= # branches) if a=0
Det@) = Doy + Oew)/2 = boje If 0<a <1

Proof. The proposition is a translation of the results of [LS], extended
to the case of non-reduced singularities.' The difference with [LS] is, that the
roots of A’, coming from the boundary, must be added to the weight one part,
and the roots of Ay must be subtracted from the weight zero part. In the
language of [Ne]: The I'y and the —Ai part contribute to the negative
(weight 1) spectrum numbers, the A, part contributes to the positive
(weight 0) spectrum numbers. The pairs of eigenvalues in the 2 X 2-Jordan
blocks are evenly distributed among the positive and negative parts. The roots
of A, give only weight 0 spectrum numbers and they have negative
multiplicity. [

4.9. A point which may cause confusion is the fact that in the definition of
spectrum  reduced (co)homology is used. Therefore we define
Sp«(f) = Sp(f) — (0). It is now possible to compare Spy with A,: If
Sp«(f) = X 7ta(@), then Ay (t) = ], — e(@) .

1
Example. The A, singularity has Spy = — (5) — (0). Recall that its

Ay equals (¢2—1)~'. D, has spectrum Sp = (0), so Spyx = 0 (‘empty’). Let
fx, ) = (¥2—=x3) (y3—x?) be the A’Campo singularity. Then:
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Sps (/) = (—%) +2(—%) +2(_%) +2(%)
1)

As with all isolated singularities, this spectrum is symmetrical (i.e. if (a) is in
the spectrum, then so is (—a)). This is not the case with non-isolated
singularities. The asymmetry comes from the fact that the Milnor fibre can
have more than one connected component and from the fact that the
monodromy possibly acts non-trivially on the boundary of F. Both can be seen

mn:
srary - (1) (1
Px y 5 5

Observe that the Ay, of x2y? is just 1, as with D, .

4.10. The A, behaves well under splicing: it is the product of the Ay of the
splice components. Our topological way of looking at spectra asks for a for-
mula of splicing spectra. It appears that Spy, = Sp — (0) is a/most additive.

Example. In the example above we computed the spectrum of the
A’Campo singularity. Both splice components are isomorphic to that of the
non-isolated singularity x2(y% —x3), which has spectrum:

1 3 1
Sps={ =} +|—-——]+ | —
2 10 10
1 3
+1l=]+(—=.
() (%)
So we have to add both spectra, but instead of 2(—%) we have

1 1
( —5) + (5) . This is the result of the new edge in the EN-diagram, giving

a new 2 X 2-block.

4.11. THEOREM. Let L be the result of splicing L' and L" along
components S and S, vrespectively. Let m'(m”) be the multilink
multiplicity of S'(S"”) and put q = g.c.d.(m’, m”). Then

1

Sp« (L) = Spx (L) + Spx (L") + i (i/q) = (=i/q) .

=1
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Proof. 1If g = 1 the theorem is clear. Now suppose ¢ > 1. Consider the
behaviour of the polynomials Ay, A! and A’ under this splice operation.
Splicing introduces a new edge E which contributes to A! with a factor
1?7 — 1. This introduces new 2 X 2-Jordan blocks. Both splice components

_ i
have fz 11 ( -—) in their spectrum (coming from A’). But, as both eigen-

i=1

_ i i
values in a 2 X 2-block are of different weight, L has ¥ 7 1 ( ——) + (—)

q q
instead of the sum of both parts. It is clear from theorem 4.8 that all other
parts of the spectra of L’ and L’ have to be added. O]

5. INVARIANTS IN THE CASE
THAT f HAS ONLY TRANSVERSAL A; SINGULARITIES

In this section we describe the topology and equation of a topological series
that belongs to a non-isolated singularity with only transversal A,
singularities.

Throughout this section, fe # is of the form f = f;--- flg, with
fi,..., f» irreducible and g reduced. The critical set of f is
Y =2, U - U, and the transverse type of f along X; is A;. For all
ie{l,...,r}, we have numbers N, and c¢; as defined in section 3.3. Let
N; > Ny; (1 <i<r). According to theorem 3.4, a typical element of the series
belonging to f has the topological type (EN-diagram) I'*:

I
et

1"*

That is: each arrow of the EN-diagram I" of f belonging to a double com-
ponent, is replaced in the way described in theorem 3.4. So varying the N,
will give us the complete series belonging to f.

The following two propositions are easy consequences of theorem 3.4. Let
N = (Ny, ..., N,) and let f» have topological type T'*.

5.1. PROPOSITION. Let A4lf] and Ay[fn] be the Ay, of [f and
f~ respectively. Then:

r

Aclfnl(@®) = Alf1@) - T (@M= (=1)N) . ]

i=1
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