Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 36 (1990)

Heft: 1-2: LENSEIGNEMENT MATHEMATIQUE

Artikel: CATEGORIES DERIVEES ET DUALITE, TRAVAUX DE J.-L. VERDIER
Autor: Illusie, Luc

DOl: https://doi.org/10.5169/seals-57914

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-57914
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique, t. 36 (1990), p. 369-391

CATEGORIES DERIVEES ET DUALITE,
TRAVAUX DE J.-L. VERDIER

par Luc ILLUSIE !)

Je vais parler des travaux de Verdier en algébre homologique dans les
années soixante, du moins des plus célébres d’entre eux: sa thése sur les
catégories dérivées, et ses contributions aux théories de dualité.

1. CATEGORIES DERIVEES

1.1. Les catégories dérivées ont eu d’innombrables applications. D’un
maniement réservé, au début, a un petit cercle d’initiés autour de
Grothendieck, elles sont devenues aujourd’hui d’un usage courant dans
quantité de domaines, bien au-dela de la géométrie algébrique (je pense
notamment a ’analyse microlocale). Pour comprendre la révolution qu’a
constituée ’introduction des catégories dérivées, il faut se replacer en 1960.
A cette époque, I’algébre homologique est déja tres développée. Cohomologie
des faisceaux, foncteurs dérivés, suites spectrales forment une théorie élaborée,
pour laquelle on dispose d’excellents traités: le livre de Cartan-Eilenberg [3],
celui de Godement [10], et le long mémoire de Grothendieck [13], unifiant et
généralisant les constructions de [3] et [10]. Pourtant, Grothendieck se rend
compte que ce formalisme est nettement insuffisant pour ce qu’il envisage de
faire. Deux ans plus tdt, au Congres international d’Edimbourg, il avait en
effet esquissé [14] un vaste programme de reconstruction de la géométrie
algébrique: la théorie des schémas. Dans le cadre de ce programme, il avait
annoncé des extensions du théoréme de dualité de Serre [28] aux faisceaux
cohérents sur des variétés algébriques arbitrairement singuliéres. Au moment
d’entreprendre une rédaction d’ensemble de ses résultats, il s’apercoit que, ne
serait-ce que pour formuler les énoncés qu’il a en téte, il manque des outils

1) Exposé donné le 19 octobre 1989, lors de la cérémonie en hommage a Jean-Louis
Verdier organisée par I’Université de Paris VII.
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adéquats. Il concoit alors une nouvelle théorie des foncteurs dérivés,
conduisant a une refonte compléte de 1’algebre homologique. Il explique les
idées maitresses de son projet a Verdier, et le lui propose comme sujet de these.
Verdier met rapidement sur pied les constructions essentielles, et, dans le
courant de I’année 1963, rédige un résumé des principaux résultats [V12].
Disposant alors des fondements voulus, Grothendieck expose la théorie de
dualité qu’il avait en vue dans un gros manuscrit [15], qui servira de base au
séminaire que Hartshorne dirigera a Harvard ’automne de la mé€me année
[17]. Le résumé de Verdier [V12] et le premier chapitre de ce séminaire
resteront d’ailleurs longtemps les seules références sur la théorie des catégories
dérivées.

1.2. L’observation de départ est que les constructions usuelles de ’algebre
homologique fournissent non seulement des groupes de cohomologie, des
suites exactes longues, des suites spectrales, mais en général un peu plus: des
complexes avec une certaine indétermination. Pour préciser ce point,
Grothendieck introduit la notion suivante, fondamentale pour toute la suite: si

L=(.>Li=Li*'=_), M=(.>M->M"+-_)

sont des complexes d’une catégorie abélienne et u: L — M un morphisme de
complexes, on dit que u est un quasi-isomorphisme si H'u: H'L - H'M est
un isomorphisme pour tout i. Les complexes obtenus en pratique sont «bien
définis a quasi-isomorphisme pres».

A titre d’illustration, revenons sur la définition des faisceaux images
directes supérieures R/ fy E, ou f:X— Y est une application continue entre
espaces topologiques et E un faisceau abélien sur X. On choisit une résolution

O—-E-I>1'—> . . —>I"—> .

(i.e. un quasi-isomorphisme E—I), ou les I" sont des faisceaux abéliens
injectifs, on considére le complexe f,/ déduit de I par application terme a
terme du foncteur image directe fy, et 'on «définity R'f,E comme le
i-éme faisceau de cohomologie de fi1,

RIfsE:= o (fil) .

Si E— I’ est une seconde résolution de E par un complexe a composantes
injectives, il existe un morphisme de résolutions / — I” (i.e. un morphisme de
complexes I— I’ compatible aux augmentations £— 1, E—I'), qui est une
équivalence d’homotopie; le morphisme fiI— f«I' qui s’en déduit par
application de f est encore une équivalence d’homotopie, a fortiori un quasi-
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isomorphisme: on obtient ainsi un systéme transitif d’isomorphismes entre les
~7if.I, et Pon peut, plus canoniquement, définir R'fyF comme la limite
(inductive, disons) de ce systéme. Parfois, on préfére «calculer» R'f«E en
utilisant d’autres types de résolutions. Supposons qu’on ait une résolution
E— C, ou les composantes de C = (C9— C?—...) sont acycliques pour fx,
i.e. telles que R4/, C" = 0 pour tout g > 0 (et tout n>0) (par exemple une
résolution flasque, ou une résolution par des faisceaux mous, ou une résolution
de Cech relative a un recouvrement ouvert convenable). Il existe alors un
morphisme de résolutions C— I, qui n’est plus en général une équivalence
d’homotopie, mais qui, grace & ’hypothése faite sur C, est tel que fx C = fol
est encore un quasi-isomorphisme. On a donc % f,C—>Rf E (d’ou
d’ailleurs un systéme transitif d’isomorphismes entre les 57 /£, C relatifs aux
divers choix de C). Mais la construction donne plus: la famille des complexes
f+C associés aux résolutions a composantes acycliques pour fi, qui forment
une seule classe «a quasi-isomorphisme prés». Plus précisément, deux tels
complexes [f.C, [f«C’ sont reliés par des quasi-isomorphismes
f«C— fiul< f.C'. La connaissance de cette classe est bien str plus fine que
celle des R'f.E, elle permet par exemple de reconstituer les groupes de
cohomologie H"(X, E) comme groupes d’hypercohomologie H"(Y, f.« C) (ce
qui donne naissance a la suite spectrale de Leray de f, nous reviendrons sur
ce point plus loin).

1.3. C’est sans doute ce type de considérations qui a amené Grothendieck a
proposer la construction suivante, trés naturelle, mais révolutionnaire a
I’époque: C(A) désignant la catégorie des complexes d’une catégorie
abélienne A, former la catégorie D(A) déduite de C(A4) «en inversant formel-
lement les quasi-isomorphismes». Cette nouvelle catégorie s’appellera «caté-
gorie dérivée» de A; le «foncteur dérivé rotal» droit (resp. gauche) d’un
foncteur additif F: A — B devra étre un certain «prolongement» de F en un
foncteur RF (resp. LF) de D(A) dans D(B), redonnant les RF (resp. LiF)
par application de H'.

La construction de D(A), ou plutdt du couple formé de D(A) et du foncteur
C(A) = D(A) comme solution d’un probléme universel pour les foncteurs de
C(A) dans une catégorie D transformant quasi-isomorphismes en isomor-
phismes, ne pose pas de probleme. Toutefois, Verdier observe qu’il est techni-
quement plus commode de passer par I’intermédiaire de la catégorie, notée
K(A), dite des complexes & homotopie prés (qui a mémes objets que C(A), mais
ou les fleches sont les classes d’homotopie de morphismes de complexes), et
d’effectuer la «localisation» en deux temps:
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C(4) > K(A)~> D) ,

le premier revenant a inverser formellement les homotopismes (ou équivalences
d’homotopie), le second les (classes d’homotopie de) quasi-isomorphismes. La
catégorie D(A) a encore mémes objets que C(A). L’avantage de passer par
K(A) est qu’au lieu qu’une fléche u: L — M de D(A) soit définie par une chaine
de fleches de C(A) de longueur arbitraire

Lo .. ... >. <M

(ou les fleches allant dans le «mauvais» sens sont des quasi-isomorphismes),
u s’écrit comme une «fraction» u = fs~'ouwu = t-!g, ou f, s, ¢, g sont des
fleches de K(A), et s, t des quasi-isomorphismes. Plus précisément, D(A)
s’obtient a partir de K(A) par un «calcul de fractions bilatére»: les quasi-
isomorphismes 7#: M — M’ de K(A) forment une catégorie filtrante I, et

(131) HOITID(A)(L,M) = limHomK(A)(L, M’)

1

(énoncé analogue «de I’autre coté»), cf. [17, I §§3, 4].

1.4. Les catégories K(A) et D(A) sont additives, mais ne sont pas en général
abéliennes!). Cet inconvénient est pallié, dans une certaine mesure, par
I’élément de structure fourni par la famille des «triangles distingués». Un
triangle de K(A) (resp. D(A)) est une suite de morphismes de K(A) (resp. D(A))

L—M—N—L[l]

(ou L[1] est le complexe défini par L[1]' = L‘*!,d; ;3 = — d.), notée aussi

/\

+ 1
L

M

on a une notion évidente de morphisme de triangles. On dit qu’un triangle est
distingué s’il est isomorphe au triangle standard défini par le cone C(u) d’un
morphisme de complexes u:E — F,

ESFScwdEN],
ot Cw)i=E+"@®F,dcyy= —dg+u+dp,i:F>C() est Ilinjection

) En fait, on peut montrer (Verdier, non publi¢) que K(A4) (resp. D(A)) n’est abélienne
que si A est semi-simple (i.e. telle que toute suite exacte courte de A se scinde).
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naturelle, et p:C(u)— E[1] est I'opposé de la projection naturelle. Par
exemple, une suite exacte courte de complexes

0L 515107 >0

d
donne naissance a un triangle distingué L’'—L—L"”—L’[1] de D(A),
caractérisé par le fait que

L' ——L s L'[1]

~ /.

soit un morphisme de triangles, ou s est le quasi-isomorphisme donné par j
sur Liet Osur L' 1; alors Hid: L' - L"" "' est I’opérateur bord habituel de
la suite exacte longue de cohomologie (ceci explique le signe de p choisi plus
haut).

Les triangles distingués de K(A4), D(A), et de catégories qui s’en déduisent

7 ch)\ ,

L/l

naturellement (sous-catégories pleines définies par des conditions de degré ou
de finitude, catégories «quotients» obtenues par inversion formelle de
certaines fléches) ont en commun un certain nombre de propriétés remar-
quables, que Verdier axiomatise en introduisant la notion de «catégorie
triangulée». Une catégorie triangulée est une catégorie additive D, munie d’un
automorphisme dit de translation, noté L — L[1], et d’une famille de triangles
dits distingués, soumis aux axiomes suivants, que nous recopions pour la
commodité du lecteur (cf. [17], [V12]):

(T1) Tout triangle de D isomorphe a un triangle distingué est distingué. Pour
. . Id .. .

tout objet L de D, le triangle L = L — 0 — L[1] est distingué. Tout morphisme

u:L—>M de D est contenu dans un triangle distingué L SM->N-L [1].

- u v w . . Ve . . .
(T2) Un triangle L = M — N — L[1] est distingué si et seulement si le triangle
—u[l]

M>NSLI] S M{1] est distingué.

(T3) Tout diagramme de D

L — = M—» N = L[]]

L

L —= M —» N’ — L'[1]

y
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ou les lignes sont des triangles distingués et le carré est commutatif, se compléte
en un morphisme de triangles.

(T4) Pour tout couple de fléches u: L — M, v: M — N de D et tout triplet de
triangles distingués

LSMSN -L[1], M>N-L'3M[1], LSN->M —L[],

il existe des fleches a: N" = M’ et b: M’ — L’ telles que (Id., v, a) et (u, Idy, b)
soient des morphismes de triangles et que le triangle

a b x[1}-y
N ->M —-L" = N'[1]
soit distingué.
L’axiome (T4) s’appelle souvent axiome de [’octaédre, en raison de la figure

obtenue, ou les quatre triangles hachurés sont commutatifs, et les quatre autres
distingués:

Dans la catégorie D(A), (T4) résulte d’un cas particulier du fait qu’une injec-
tion de suites exactes courtes de complexes s’insere dans un diagramme des
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neuf (suite exacte courte de suites exactes courtes); Verdier remarque d’ailleurs
que dans une catégorie triangulée, tout carré commutatif se prolonge en un
«diagramme des neuf» [1, 1.1.11].

Une structure un peu plus faible que celle de catégorie triangulée,
comprenant les axiomes (T1) a (T3) mais non (T4), a été dégagée pour la
premiére fois, semble-t-il, par Puppe [25], pour exprimer les propriétés de la
catégorie homotopique stable.

1.5. Un foncteur additif F: A — B entre catégories abéliennes se prolonge de
facon naturelle en un foncteur additif F: K(A) — K(B), transformant triangles
distingués en triangles distingués. Ce dernier, par contre, ne transforme pas
en général quasi-isomorphismes en quasi-isomorphismes, donc ne se prolonge
pas en un foncteur de D(A) dans D(B). C’est ce défaut qui est a I’origine de
la définition (de Grothendieck-Verdier) des foncteurs dérivés «totaux» !): un
Joncteur dérivé droit de F est un couple formé d’un foncteur RF: D(A) — D(B)
et d’un morphisme m: F— RF (entre foncteurs de K(A4) dans D(B)),

K(A) —= D(A)

L

KB) —= DB)

universel en un sens évident (2 savoir que, pour tout couple (F': D(A) = D(B),
m’: F— F’), 1l existe un unique morphisme u: RF— F’ tel que m’ = um); de
méme, un foncteur dérivé gauche de F est un couple formé d’un foncteur
LF:D(A)—~ D(B) et d’un morphisme m:LF— F possédant une propriété
universelle analogue.

Le formalisme des catégories triangulées — et notamment la théorie de
«localisation» qu’il y développe — fournit a Verdier un cadre commode pour
’étude de I’existence et des propriétés de transitivité des foncteurs dérivés. Le
plus souvent, le dérivé droit RF n’est pas défini sur la catégorie D(A) tout
entiere, mais seulement sur la sous-catégorie pleine D * (A) formée des objets
a cohomologie bornée inférieurement (qui est aussi la catégorie déduite de
K*(A) (formée des complexes a degré borné inférieurement) par inversion
des quasi-isomorphismes): plus précisément, c’est le probléme universel
analogue relatif a F: K+(A) — K *(B) qui admet une solution. C’est le cas par
exemple si A posséde suffisamment d’objets injectifs (i.e. tout objet de A se
plonge dans un objet injectif); alors H'RF est le i-iéme foncteur dérivé

- h Ce qualificatif (destiné a marquer la distinction avec les foncteurs «traditionnels»
R'F, L'F) ne s’emploie plus guére aujourd’hui.
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«usuel» RF; de plus RF transforme triangles distingués de D*(A) en
triangles distingués de D+ (B); si 0= L' — L — L' — (0 est une suite exacte
courte de complexes (appartenant a K+ (A4)), on en déduit (cf. 1.4) un triangle
distingué L= L—>L"—L’[1] de D(A), d’ot un triangle distingué
RFL’— RFL - RFL" 5 RFL’[1] de D(B), et H'd:R'FL” — R!*1FL’ est
I’opérateur bord usuel. Le prototype de cette situation est le cas ou F est le
foncteur image directe fy des _Zy-modules vers les _Zy-modules, ou
J:X — Y est un morphisme d’espaces (voire de topos) annelés. Le principe de
la définition de RF est simple: pour L eK*(A), on choisit un quasi-
isomorphisme L —q>l, ou /e K*(A) est a composantes injectives (il en existe
si A admet assez d’injectifs), et ’on «pose» RFL = FI, m = Fq:FL — FI.
Quand de plus F est de dimension cohomologique finie (ce qui veut dire qu’il
existe un entier N tel que R‘F = 0 pour i > N), alors RF est défini sur la caté-
gorie D(A) tout entiére. De maniere analogue, le dérivé gauche LF n’est défini
le plus souvent que sur la sous-catégorie pleine D ~(A) formée des complexes
a cohomologie bornée supérieurement (qui est aussi la catégorie déduite de
K~ (A) (formée des complexes a degré borné supérieurement) par inversion
des quasi-isomorphismes). La situation est en fait moins bonne que pour les
dérivés droits, car il est rare que A possede suffisamment de projectifs; le
prototype est le cas du foncteur F = f* pour un morphisme f comme ci-
dessus: bien qu’il n’y ait pas, en général, assez de projectifs dans la catégorie
des _Z’y-modules, on parvient a définir Lf*:D-(Y)— D~ (X) (ou D(-)
désigne la catégorie dérivée de celle des _Z“modules), en «posant»
Lf*L = f*P, ou P— L est un quasi-isomorphisme avec P a composantes
plates et a degré borné supérieurement.

Si G:B— C est un second foncteur additif entre catégories abéliennes,
alors, sous des hypothéses convenables, on a un isomorphisme de transitivité

R(GF) = (RG) (RF)  (resp. L(GF) = (LG) (LF)) .

entre foncteurs de D+ (A) dans D *(C) (resp. de D ~(A) dans D~ (C)) (voire
de D(A) dans D(C)). Pour les dérivés droits, c’est le cas par exemple si B
possede assez d’objets injectifs et F transforme injectifs de A en objets
acycliques pour G (i.e. sur lesquels R‘G = 0 pour i[> 0). A titre d’illus-
tration, on peut prendre pour F'le foncteur f, de tout a I’heure et pour G le
foncteur sections globales I'(Y, —) (car I'image directe d’un injectif est
flasque). L’isomorphisme I'(Y, fxE) = I'(X, E) se dérive alors en

RT(Y,RfsL)=RT(X,L) (LeD*(X)).
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C’est la formule & laquelle j’ai fait allusion a la fin de 1.2, et qui, par la suite
spectrale des foncteurs composés, fournit la suite spectrale de Leray de f

E% = H°(Y,RIf«L)=H*(X,L) .

Au lieu de partir d’un foncteur additif 7: A — B, on peut considérer plus
généralement un foncteur exact F: K(A)— K(B) (ou K*(A) > K(B), * = +
ou —), «exact» voulant dire additif et transformant triangles distingués en
triangles distingués, et définir de maniére analogue les notions de dérivés droit
et gauche de F. On peut aussi considérer des multifoncteurs
K(A)) X ... Xx K(A,) > K(B) covariants en certains arguments et contra-
variants en les autres, et étendre la théorie des foncteurs dérivés a ce cadre.

Le formalisme des foncteurs dérivés fournit une interprétation intéressante
des homomorphismes dans la catégorie dérivée. Si A posséde assez d’injectifs,
le bifoncteur «complexe des homomorphismes»

Hom : K(4)° x K(4)~ K(Z), (L, M)+ Hom" (L, M)

(ou C(Z) désigne la catégorie des complexes de groupes abéliens et CO la
catégorie opposée a une catégorie C) se dérive en un bifoncteur

RHom:D(A) x D*(A) —» D(Z)
et I’on a un isomorphisme canonique
Homp (L, M) = H°RHom (L, M)

pour L e D(A), Me D~ (A). En pratique, cette formule est beaucoup plus
utile que (1.3.1). Si A est la catégorie des _#y-modules sur un espace (ou
topos) annelé, on peut en effet analyser le second membre & 1’aide du foncteur
dérivé R<Zom du foncteur Zom  («complexe des faisceaux d’homomor-
phismes de _#y-modules»): la formule T'(X, <Zom (L, M)) =Hom (L, M) se
dérive en

RT(X, Rom(L, M)) = RHom(L, M)
(pour Le D~ (X),Me D~ (X)), d’ou
(%) Hompx (L, M) = H(X, R<Zom(L, M))

(0-ieme groupe d’hypercohomologie de X a valeurs dans le complexe
R<7om(L, M)); des informations sur les faisceaux de cohomologie de L et M
permettent alors, grace a (), d’obtenir, par diverses suites spectrales, des ren-

seignements sur le groupe Hompx (L, M), parfois de le calculer
compleétement.
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Deligne a introduit dans (SGA 4 XVII 1.2) une notion légerement différente
de foncteur dérivé, un peu plus souple en ce qu’elle permet de parler de «déri-
vabilité en un point» (i.e. en une valeur donnée de I’argument). Dans la plupart
des cas, elle coincide néanmoins avec la notion précédente.

1.6. Si A est une catégorie abélienne, A se trouve plongée de facon naturelle
dans la catégorie dérivée D(A), comme sous-catégorie pleine formée des
complexes concentrés en degré zéro. Ce n’est pas le seul exemple d’une
catégorie abélienne plongée dans la catégorie dérivée. La théorie des faisceaux
pervers en fournit d’autres, non triviaux. Pour I’étude systématique de ces
plongements, le formalisme des catégories triangulées s’aveére €tre un outil
efficace, comme le montrent Beilinson-Bernstein-Deligne-Gabber [1] (pour un
historique de la théorie des faisceaux pervers et une vue d’ensemble de ses
développements, je renvoie le lecteur au rapport de Kleiman [22]).

1.7. Dans une catégorie triangulée D, toute fleche u: L — M admet, d’apres
(T1), un «cone» N, i.e. s’inseére dans un triangle distingué L > M — N — L[1].
Il résulte des autres axiomes que /N est unique a isomorphisme pres, cet isomor-
phisme n’étant toutefois pas unique. Si u: L = M, u': L — M’ sont des bases
de triangles distingués de troisiemes sommets N, N’, tout morphisme des bases
se prolonge, d’aprés (T3), en un morphisme de triangles, mais le morphisme
des cOnes correspondant N — N’ n’est pas unique, et il n’existe pas a priori
de choix canonique (en fait, comme le montre Verdier dans sa thése, 1’existence
d’un «foncteur cOne» imposerait des restrictions draconiennes a D: par
exemple, si D = D(A), la catégorie abélienne A serait semi-simple). Cette diffi-
culté est a I’origine de la théorie des catégories dérivées filtrées [18, V], ou la
construction cone, non fonctorielle, est remplacée par celle de gradué associé,
qui Pest. Ce formalisme et ses généralisations jouent un réle essentiel dans la
théorie de Hodge mixte de Deligne (cf. [5], [6], et, plus récemment, [26], [27]).
Il n’a toutefois pas été dégagé de structure axiomatique jouant vis-a-vis des
catégories dérivées filtrées le méme role que les catégories triangulées vis-a-vis
des catégories dérivées ordinaires.

2. DUALITE

Comme on I’a dit au début, ce sont les théories de dualité qui ont constitué
la motivation initiale pour ’introduction des catégories dérivées. Elles en ont
fourni aussi les applications les plus remarquables.
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2.1. La premiére de ces théories a voir le jour est celle développée par
Grothendieck pour les faisceaux cohérents sur les schémas, dans ses notes [15],
base du séminaire de Hartshorne [17]. Rappelons briévement en quoi consiste
ce formalisme. Si X est un schéma, notons D(X) la catégorie dérivée de celle
des _/x-modules, et, si X est noethérien, D.(X) la sous-catégorie pleine for-
mée des complexes a cohomologie cohérente. Pour tout morphisme
lissifiable!) f:X — Y entre schémas noethériens, Grothendieck définit un
foncteur

fhDI(Y)~ D/ (X),
avec un isomorphisme de transitivite
&= rf'g

, foo, 8 . 8t .
pour un composé X — Y — Z (vérifiant une condition de cocycle pour un
composé de trois morphismes), de telle maniere que

2.1.1)
FIM = [*M® Q%,y1d] si f est lisse de dimension relative d
Rf%mﬁy(fx,m | X si  f est une immersion fermée

(c’est une sorte de miracle que ces deux définitions, en apparence si
dissemblables, puissent «se mettre ensemble»!). Si f est propre, et X, Y de
dimension de Krull finie, le foncteur Rf, est défini sur D(X). Grothendieck
définit alors, moyennant certaines hypotheses supplémentaires (par exemple
que f se factorise en une immersion fermeée suivie de la projection d’un espace
projectif standard) un morphisme fonctoriel, qu’il appelle « morphisme trace»,

Ty Rfe f'M—>M (MeD](Y)),

faisant de f' un adjoint a droite «partiel» de Rfy, i.e. donnant lieu a un
1somorphisme, dit de dualité globale.

(2.1.2)  Hom(L, f'M)> Hom(Rfx L, M) (LeD.(X), MeD/(Y));

ces morphismes traces vérifient bien entendu des compatibilités convenables
avec les isomorphismes de transitivité indiqués plus haut. Si Y est le spectre
d’un corps k, si X est lisse de dimension d, alors, pour M = k et L réduit a

un seul faisceau cohérent placé en degré — i, on retrouve le théoréme de dualité
de Serre [28]

') I.e. qui se factorise en une immersion fermée suivie d’un morphisme lisse (nous nous
plagons dans ce cadre pour simplifier, d’autres types d’hypothéses sont envisagés dans [17]).
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Ext?-{(L, Q%,)> Hom(H(X, L), k) .

2.2. Dans le méme temps, en collaboration avec Artin et Verdier, Grothen-
dieck développe la cohomologie étale. Les résultats clés de la théorie étant
acquis (cohomologie des courbes, changement de base propre, pureté cohomo-
logique pour les couples lisses), il batit alors un formalisme de dualité analogue
au précédent. On fixe cette fois un anneau A = Z/nZ, n premier aux caracté-
ristiques résiduelles des schémas envisagés, et I’on travaille avecta-catégorie
dérivee D(X) des faisceaux de Ay-modules (pour la topologie étale) sur X.
Pour f:X — Y lissifiable, Grothendieck définit un foncteur

1D (¥) = D+ (X)

(avec un isomorphisme de transitivité comme plus haut pour un composé), de
telle maniere que

2.2.1)
fEM Q@ n®2d] si f est lisse de dimension
FIM = relative d'!)
RZomy (Ax,M)|X (= RTx(M)|X) si f est une immersion
fermée?) .

La encore, c’est un miracle (dii au théoréme de pureté) que ces deux définitions
se réunissent. Sous des hypothéses supplémentaires convenables (par exemple,
si f se factorise en une immersion (non nécessairement fermée) suivie de la
projection d’un espace projectif standard), on dispose du foncteur image
directe a supports propres Rf,:D(X)— D(Y)?3), et Grothendieck définit
encore un morphisme trace

Tr:RAAf'M—>M (MeD*(Y)),

faisant de f' un adjoint a droite partiel de Rf,, i.e. donnant lieu a un
isomorphisme, dit de dualité globale,

(2.2.2) Hom(L, f'M) = Hom(Rf\L, M) (LeD(X),MeD~*(Y)). %

1 n, désigne le faisceau des racines n-iémes de 1’unité.
%) T, désigne le faisceau des sections a support dans X.
3) Ce foncteur n’est pas le dérivé du foncteur f): = ROf, (SGA 4 XVII 6.1.6).

4) La démonstration initiale de Grothendieck est exposée par Verdier dans [V5]. Une
formule un peu plus générale est établie par Deligne dans (SGA 4 XVIII).
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Si Y est le spectre d’un corps algébriquement clos, et si X est lisse de dimension
d, alors, prenant L = Ax[i], M = Ay, on obtient un isomorphisme analogue
4 I’isomorphisme de dualité de Poincaré pour les varietes topologiques:

H2-i(X, u®9) SHom (H.(X, Z/nZ),Z/nZ) .

Les lignes qui précédent ne donnent évidemment qu’une idée tres incom-
pléte du formalisme construit par Grothendieck. Tant dans le contexte des
faisceaux cohérents que dans celui de la cohomologie étale, celui-ci comprenait
aussi une théorie des complexes dualisants et de dualité locale, un formulaire

L < - !
reliant les foncteurs fondamentaux (& ,R<Zom,Rfs,Lf*,Rf,,f’) (que
Grothendieck a appelé depuis «les six opérations»)!), une théorie d’homo-
logie et de classes de cycles?).

2.3. De son cdté (et toujours a la méme époque), Verdier jette les bases d’un
formalisme analogue pour les faisceaux sur les espaces topologiques. Si X est
un espace topologique, notons D(X) la catégorie dérivée de celle des faisceaux
abéliens sur X. Soit f:X— Y une application continue entre espaces
localement compacts. Le foncteur image directe a supports propres f; admet
un dérivé droit Rf,:D*(X)— D *(Y)3). Supposons de plus que f, soit de
dimension cohomologique finie (ou, ce qui revient au méme, que la dimension
de la cohomologie a supports compacts des fibres de f soit uniformément
majoree). Alors Rf, est défini sur D(X). Dans ce contexte, Verdier s’apercoit
qu’on peut renverser la vapeur. Il observe qu’il n’est pas difficile de prouver
a priori existence (et I'unicité) d’un foncteur f': D *(Y)— D*(X) adjoint a
droite partiel de Rf;, i.e. muni d’un morphisme trace Rf, /! — Id donnant un
isomorphisme

2.3.1)  Hom(L, f'M)>Hom(Rf,L,M) (LeD(X),MeD*(Y)) .

Le point est qu’on peut calculer Rf,L par un procédé fonctoriel «au niveau
des complexes», Rf\L = fiC'(L), ou C'(L) est une résolution dépendant
fonctoriellement du complexe L, & composantes acycliques pour f,, et telle
que L — f,C(L) soit exact en L; I’existence d’un adjoint a droite au foncteur
Ew— f,CI(E) (i fixé, E faisceau abélien sur X) résulte de théorémes de repre-

1) Dans le contexte cohérent, Rf, n’a été défini que plus tard, par Deligne [4].

%) Par un regrettable concours de circonstances, la théorie dans le contexte cohérent,
esquissée dans [14] et [15], n’a pas été reprise dans [17], et celle dans le contexte étale
(SGA 5, exposés oraux) n’a été rédigée que dix ans aprés (et publiée hors de SGA 5)
(SGA 4 1/2, La classe de cohomologie associée & un cycle), [V11], [23].

3 1l n’y a pas ici de piége, cf. note 3) page précédente.
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sentabilité essentiellement triviaux (cf. [V7, 1.0], ou, plus généralement,
(SGA 4 XVIII 3.1.3)), et Pexistence de f' en résulte aisément ([V1], [V4],
[V7], [11]).

L’isomorphisme de transitivité R(gf), = Rg,Rf, fournit, par adjonction,
un isomorphisme (gf)' = f'g'. Si f est linclusion d’un fermé, il découle
automatiquement de (2.3.1) que f' = Ry | X (RLCx = derive du faisceau des
sections & supports dans X). Si f est la projection d’un espace R” sur un
point, le calcul de la cohomologie a supports compacts d’une boule ouverte
implique, via (2.3.1), que f'Z = Z[m]. Plus généralement, on voit que, pour
J: X — Y «lisse de dimension relative m» (i.e. X localement produit de Y par
R™), on a

(2.3.2) FIM= f*M® or [m],

ou or est un faisceau de Z-modules localement libre de rang 1 (le «faisceau
d’orientation relative»)!). On retrouve ainsi des formules analogues a (2.1.1)
et (2.2.1). Bien entendu, lorsque X est une variété topologique de dimension
m, on déduit de (2.3.1) et (2.3.2) la dualité de Poincaré usuelle sous la forme
d’une suite exacte

0—-Ext'(H.*'(X,Z),Z) > H"~ (X, or) > Hom(H'(X, Z),Z) = 0 .

En général, pour un espace localement compact X arbitraire (tel que I'. soit
de dimension cohomologique finie), on a une suite exacte analogue, avec
Hm™- (X, or) remplacé par

H{(X):= H (X,Kx) ,
ou
(2.3.3) Ky:=4a'l,

(on note @ la projection de X sur un point). Les groupes H;(X) sont les
groupes d’homologie définis par Borel-Moore dans [2]. Ce sont aussi les
analogues des groupes d’homologie introduits par Grothendieck et auxquels
on a fait allusion plus haut. Si X est assez bon (par exemple, localement
ouvert dans un polyédre fini), H.(X) coincide avec I’homologie singuliére
usuelle [V11].

Le formalisme s’enrichit nettement lorsqu’on travaille dans la catégorie des
schémas de type fini sur C (resp. des espaces analytiques complexes). On

Y Voir [V4, §5] pour un énoncé un peu plus général; le lecteur souhaitant reconstituer
la démonstration pourra s’aider des techniques de (SGA 4 XVIII 3.2), ou est traité I’analogue
en cohomologie étale.
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dispose alors de la notion de faisceau abélien algébriquement (resp. analyti-
quement) constructible (i.e. tel qu’il existe une suite décroissante de fermés de
Zariski (resp. fermés analytiques) X = X, D X; D X; D ... telle que la
restriction du faisceau donné a X;— X;.; soit un faisceau localement')
constant de type fini). La sous-catégorie pleine Df(X) de D(X) formée des
complexes & cohomologie bornée et constructible se trouve alors étre

L
miraculeusement stable sous les «six opérations» f*,Rfx,f',\Rf1,®,
R<7om [V11]. De plus (loc. cit.), le complexe Ky (2.3.3) est un complexe
dualisant, i.e. tel que, si Dy désigne le foncteur R<&om(—,Kx), la fleche
naturelle

(2.3.4) L — DyDyL

soit un isomorphisme (pour tout L eD?(X)); enfin, le foncteur D

«échange» C>L<) et R&Zom, f* et f',Rfy et Rf,. Des résultats analogues
en cohomologie étale pour les schémas de type fini sur un corps k de caracté-
ristique p avaient été établis par Grothendieck (pour p = 0) dans (SGA 5 I),
puis la restriction sur p (due a 'usage de la résolution des singularités) fut levée
par Deligne (SGA 4 1/2 Th. finitude); les arguments de [V11] sont d’ailleurs
essentiellement les mémes.

2.4. Le principe de la construction a priori de f' comme adjoint a été utilisé
par Verdier pour la premicre fois, je crois, pour établir une théorie de dualité
pour la cohomologie des groupes profinis [V3]. Il fut ensuite repris et adapté
par Deligne dans le contexte des faisceaux cohérents [4] et dans celui de la
cohomologie étale (SGA 4 XVIII): il permet de définir ' pour f «compac-
tifiable» 2) plutot que «lissifiable». Dans le contexte cohérent, le calcul de f*
pour f lisse est assez délicat: il est esquissé dans [4], des compléments sont
donnés par Verdier dans [V9].

Mentionnons ¢galement deux autres contributions de Verdier aux
formalismes de dualité, 'une, en collaboration avec M. Artin, sur la cohomo-
logie étale des corps de nombres [V2], ’autre, en collaboration avec Ramis
et Ruget, sur la cohomologie des faisceaux cohérents sur les espaces
analytiques complexes [V10].

2.5. Une des applications les plus remarquables de la dualité est la
découverte, par Verdier, d’une formule de Lefschetz trés générale pour les

1) Pour la topologie classique (non celle de Zariski!)
2y l.e. qui se factorise en une immersion ouverte suivie d’un morphisme propre.
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«correspondances cohomologiques». Cette formule vaut dans plusieurs
contextes. Placons-nous, pour fixer les idées, dans celui de la cohomologie
¢tale.

Soit X un schéma propre sur un corps algébriquement clos k de
caractéristique p, fixons un nombre premier / distinct de p, soit L un
Q,-faisceau constructible!) sur X, et donnons-nous un k-endomorphisme f
de X et «un relevement de f a L», i.e. un homomorphisme u: f*L = L. Le
couple (f, u) définit un endomorphisme (f,u)* de H*(X,L), a savoir le
compose de f*: H*(X, L)~ H*(X, f*L) et de u: H*(X, f*L) > H*(X, L), et
I’on peut considérer le «nombre de Lefschetz»

Tr(f,u) 1= Y (=D Tr((f, w)* [HI(X, L)) € Q; .

Soit X/ le schéma des points fixes de f. Verdier montre dans [V6] que

Tr(f,u) est somme de termes «locaux» attachés aux composantes connexes
de X7/:

(2.5.1) Tr(fou) = Y engony VoS5t -

Le terme v, (f, u) ne dépend que du comportement de L et (f, u) au voisinage
(étale) de x. Quand X est une courbe propre et lisse et que les points fixes de
f sont isolés et transversaux (i.e. qu’en chacun d’eux le graphe de f est
transverse a la diagonale), Artin (cf. [V6]) prouve que ’on a, pour tout
xe X/,

(2.5.2) v(f,u)=Tr(u.:L,—L,) .
On a donc, dans ce cas,

(2.5.3) Tr(f,u) = ), .. Tr(ue:L,—~Ly) .

Dans (loc. cit.), la formule (2.5.1), dans le cas général, n’était démontrée que
sous des hypothéses «de bidualité», satisfaites néanmoins dans le cas ou X
est une courbe propre et lisse. Leur validité (dans le cas général) fut établie
plus tard par Deligne, comme on ’a signalé a la fin de 2.3. D’autre part,
Grothendieck, indépendamment, et par une autre méthode («Nielsen-
Weckeny), avait prouvé (2.5.3) (et des généralisations au cas de points fixes
non transversaux), cf. (SGA 5 XII). Rappelons que, comme Grothendieck 1’a
montré, la formule (2.5.3) entraine la formule des traces pour la corres-
pondance de Frobenius (en toute dimension), d’ou découle la rationalité des

Y Pour la notion de Q,-faisceau constructible, voir (SGA 5 VI) (ou, pour un résumé,
[16] ou (SGA 4 1/2 Rapport §2)).
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fonctions L généralisées ([16], (SGA 5 XIV)) (voir aussi (SGA 4 1/2 Rapport)
pour une présentation compacte de la démonstration de Grothendieck).

On ignore si la formule (2.5.3) est encore valable pour dimX > 1 (sous
’hypothése que X est propre et lisse et que le graphe de f est transverse a la
diagonale). Deligne propose la conjecture (plus faible) suivante. Supposons
que k soit la cloture algébrique d’un corps fini F,, que X provienne par
extension des scalaires d’un schéma X, propre et lisse sur F,, et (f,u) de
(fo,uo) sur F,. Soient Fry:X—X le k-endomorphisme de Frobenius et
F:FriL — L la correspondance de Frobenius définis par (Xo, Lo) (cf. [16] ou
(SGA 5 X1V)). Pour n > 0, on peut considérer le compose

Fr(f,u):= (Fryf: X—>X, uF": f¥Fr’*L — f*L—>L) .

Comme la dérivée de Fry est nulle, dés que n > 1, les points fixes de Fry
sont isolés et transversaux, quel que soit I’endomorphisme f donné. Deligne
conjecture qu’il existe n, tel que pour n > ny on ait

(2.5.4) Tr(F*(f,u)) = Y, Tr(wF": L,~ L)) ,

la somme étant étendue aux points fixes de Fr’ f. La conjecture est
démontrée pour (f,u) égal a ’identité, avec ny = 1, d’apres Grothendieck
(loc. cit.), et aussi lorsque I’on a dim X = 1 et que le graphe de f est transverse
a la diagonale, avec ny = 0, comme on vient de le rappeler. Le cas général
reste ouvert. En fait, Deligne a formulé des variantes et généralisations de la
conjecture précédente, dans le cas non propre. Sous certaines hypotheses
techniques, elles ont été établies par Zink [29] dans le cas des surfaces!);
Gabber a proposé dernie¢rement une stratégie dans le cas général, a partir des
propriétés contractantes du Frobenius du point de vue p-adique.

Le principe de la démonstration de (2.5.1) est trés simple: interpréter
I’endomorphisme (f,u)* de H*(X, L) comme une classe de cohomologie sur
le produit X X X (a support dans le graphe I'y de f), et sa trace comme
«intégrale» d’un «cup-produit» avec la classe de I’identité (& support dans la
diagonale A), d’ou une classe & support dans X/ = I'ryn A, dont P'intégrale
se décompose suivant les morceaux de X/. Plus précisément, Verdier établit
ce qu’il appelle un «théoreme du noyau» [V8], qui est un analogue du classique
théoréme du noyau de Schwartz. Rappelons brievement !’énoncé de ce

Y (Ajouté en .mai 1990) et (sous certaines hypothéses également), en dimension
quelconque, par Pink [R. Pink, Lefschetz-Verdier trace formula for cohomology with

compact support, preprint, Bonn, 1990], et, indépendamment par Shpiz [E. Shpiz, Harvard
thesis, en préparation].
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théoréme!), pour montrer comment interviennent naturellement les
catégories dérivées, 1a ou a priori il semblerait qu’on n’en ait pas besoin. Soient
X et Y des schémas propres sur &, L € Df (X),M € Df (Y) (ou Df désigne la
«catégorie dérivée des Q,-faisceaux, a cohomologie bornée, constructible) (le
cas qui nous intéresse est X = Y, et L = M un Q;-faisceau constructible).
Par la formule de Kiinneth et le théoréme de dualité globale (variante /-adique
de (2.2.2)), on a

(2.5.5) Hom(RT(X, L), RT' (Y, M)) > Hom(prL, priM) ,

oupri: X X Y= X, pry: X X Y— Y sont les deux projections; noter d’ailleurs
que le premier membre se récrit plus simplement Hom (H* (X, L), H*(Y, M)),
vu que RI'(X, L) et RI'(Y, M) sont des complexes d’espaces vectoriels. Le
«théoréme du noyau» affirme qu’on a un isomorphisme

(2.5.6) Hom(priL, pryM) > HY(X X Y, priDyL ® pri M) ,

ou Dy est I’analogue du foncteur envisagé en (2.3.4), i.e. R&Zom(—,Kx),
Ky = a'Q, (on note a la projection de X sur Speck). La construction de
(2.5.6) est un jeu sur la dualité, utilisant notamment (mais pas uniquement)
le fait que Dy est dualisant. Remarquons que dans le cas qui nous intéresse,
bien que L soit juste un Q,-faisceau, Dyl est un complexe qui n’est pas, en
général, concentré en un seul degré, méme si X est lisse, a cause des singularités
éventuelles de L. L’endomorphisme (f,u)* de H*(X,L) correspond, par
(2.5.5) et (2.5.6), a une classe dans HO(X X X, pr¥DxL Q pr¥L), et
méme, comme on le montre sans peine, a une classe a support dans le graphe
Arde f:

c(f,u) € Hgf(X X X,prifDxL ® pr¥L) .
L’identité donne de méme une classe a support dans la diagonale
c(Id) € HY(X X X, pr¥*L @ pr¥DxL) .
Ces deux classes ont, de facon naturelle, un produit dans

Hg‘(f(Xx X, Kxyxx), et la trace de (f,u)* n’est autre que I'image de ce
produit par le «morphisme Tr» qui envoie

H())(f(X X X, Kxxx) (= H'(X’,K(xr)))
dans Q,. La formule (2.5.1) en résulte aussitot. Il y a, évidemment, un grand

nombre de compatibilités a vérifier, voir (SGA 5 III) pour les fastidieux

Y En cohomologie /-adique, cf. [V6].
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détails. Nous nous sommes placés dans le cadre des «Q,-faisceaux» pour
éviter des difficultés liées a la définition de la trace Tr(f, ) lorsqu’on travaille
avec des coefficients du type Z//"Z (difficultés qui se résolvent elles aussi par
I’usage des catégories dérivées, grdce a la notion de «complexe parfait»,
cf. loc. cit.). Mais la définition de Df(X,Ql), qui n’est pas une catégorie
dérivée a proprement parler, pose aussi des problémes techniques (voir [7], ou
[9] pour un développement systématique du formalisme /-adique).

2.6. Je voudrais, pour terminer, évoquer deux résultats de Verdier sur la
dualité, qui datent du début des années 80, et qui se sont révélés trés utiles.
L’un concerne le complexe d’intersection, I’autre la transformation de Fourier.
Eux aussi sont valables dans divers contextes, placons-nous dans le cadre
[-adique de 2.5.

a) Soit (k, /) comme en 2.5. Soient X un schéma de type fini sur k, supposé,
pour simplifier, intégre et de dimension d, et a: X — Spec(k) le morphisme
structural. «Entre» — si I’on ose dire — le faisceau constant (Q,)x et le
complexe dualisant Kx: = ¢'Q;, qui sont duaux 'un de ’autre (au sens du
foncteur dualisant Dy = R&om(—,Q))), figure le «complexe d’inter-
sectiony _7%y de Goresky-McPherson-Beilinson-Bernstein-Deligne-Gabber,
qui est défini par

Ty = j1xQuld] ,

ou j: U ¢ X est ouvert (dense) de lissité de X, et j,4 le foncteur «prolon-
gement intermédiaire» [1]. Verdier a montré que ce prolongement de
(Q))uld] est caractérisé (dans D°(X)) par la propriété d’étre auto-dual (pour
Dy) (et a une torsion a la Tate pres), et de vérifier la condition de support
suivante:

dimSupp Z(_F€x)< —i pour i> —d,
of. [1, 2.1.17].

b) Soient V' un espace vectoriel de dimension finie sur le corps fini F, de
caractéristique p, ¥’ son dual. Un caractére additif non trivial vy de F, étant
fixé, Deligne a construit une «transformation de Fouriery

Fw: D2V, Q)~>D°(V',Q) ,

«induisant» la transformation de Fourier «usuelle» sur les fonctions sur
V(F;) lorsqu’on associe a wun faisceau E sa fonction trace
xe V(F,) » Tr(F, E,), cf. [19], [21], [24]. Verdier a montré que cette
transformation commute & la dualité, voir par exemple [21, 2.1.5] pour un
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enoncé précis. Ce résultat (et ses variantes) a eu une portée considérable:
estimations uniformes de sommes exponentielles [21], formule du produit pour
les constantes locales des équations fonctionnelles des fonctions L sur les corps
de fonctions [24].

Signalons encore d’autres travaux récents de Verdier sur la transformation

de Fourier, en liaison avec les faisceaux pervers et les cycles évanescents ([V13]
a [V18)]).
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NOTE SUR LA BIBLIOGRAPHIE

La thése de Verdier sur les catégories dérivées n’a pas été publiée. Verdier a pourtant
rédigé, dans les années soixante, un long manuscrit, couvrant la plus grande partie du
sujet. On ne peut que souhaiter qu’il paraisse un jour. En attendant, la référence
classique reste le début du séminaire Hartshorne [17], combiné avec le fascicule de
résultats de Verdier [V12] et le texte de Deligne (SGA 4 XVII §§1, 2). Diverses questions
de signes sont examinées dans [8]. Le lecteur trouvera dans [1] d’importants
compléments sur les catégories triangulées et les catégories dérivées. Enfin, a I’intention
du débutant, signalons deux textes récents, a vocation pédagogique: [12], et [20, I], plus
étoffé, et agrémenté d’exercices.
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(Recu le 31 mai 1990)

Luc Illusie

Université de Paris-Sud

Arithmétique et Géométrie algébrique — Unité associée au CNRS URA D 0752
Bat. 425

91405 Orsay Cedex (France)






	CATÉGORIES DÉRIVÉES ET DUALITÉ, TRAVAUX DE J.-L. VERDIER
	1. Catégories dérivées
	2. Dualité
	...
	...
	...
	Note sur la bibliographie


