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L'Enseignement Mathématique, t. 36 (1990), p. 369-391

CATÉGORIES DÉRIVÉES ET DUALITÉ,

TRAVAUX DE J.-L. VERDIER

par Luc Illusie l)

Je vais parler des travaux de Verdier en algèbre homologique dans les

années soixante, du moins des plus célèbres d'entre eux: sa thèse sur les

catégories dérivées, et ses contributions aux théories de dualité.

L Catégories dérivées

1.1. Les catégories dérivées ont eu d'innombrables applications. D'un
maniement réservé, au début, à un petit cercle d'initiés autour de

Grothendieck, elles sont devenues aujourd'hui d'un usage courant dans

quantité de domaines, bien au-delà de la géométrie algébrique (je pense

notamment à l'analyse microlocale). Pour comprendre la révolution qu'a
constituée l'introduction des catégories dérivées, il faut se replacer en 1960.

A cette époque, l'algèbre homologique est déjà très développée. Cohomologie
des faisceaux, foncteurs dérivés, suites spectrales forment une théorie élaborée,

pour laquelle on dispose d'excellents traités: le livre de Cartan-Eilenberg [3],
celui de Godement [10], et le long mémoire de Grothendieck [13], unifiant et

généralisant les constructions de [3] et [10]. Pourtant, Grothendieck se rend

compte que ce formalisme est nettement insuffisant pour ce qu'il envisage de

faire. Deux ans plus tôt, au Congrès international d'Edimbourg, il avait en
effet esquissé [14] un vaste programme de reconstruction de la géométrie
algébrique: la théorie des schémas. Dans le cadre de ce programme, il avait
annoncé des extensions du théorème de dualité de Serre [28] aux faisceaux
cohérents sur des variétés algébriques arbitrairement singulières. Au moment
d'entreprendre une rédaction d'ensemble de ses résultats, il s'aperçoit que, ne
serait-ce que pour formuler les énoncés qu'il a en tête, il manque des outils

b Exposé donné le 19 octobre 1989, lors de la cérémonie en hommage à Jean-Louis
Verdier organisée par l'Université de Paris VII.
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adéquats. Il conçoit alors une nouvelle théorie des foncteurs dérivés,

conduisant à une refonte complète de l'algèbre homologique. Il explique les

idées maîtresses de son projet à Verdier, et le lui propose comme sujet de thèse.

Verdier met rapidement sur pied les constructions essentielles, et, dans le

courant de l'année 1963, rédige un résumé des principaux résultats [V12].
Disposant alors des fondements voulus, Grothendieck expose la théorie de

dualité qu'il avait en vue dans un gros manuscrit [15], qui servira de base au
séminaire que Hartshorne dirigera à Harvard l'automne de la même année

[17]. Le résumé de Verdier [VI2] et le premier chapitre de ce séminaire

resteront d'ailleurs longtemps les seules références sur la théorie des catégories
dérivées.

1.2. L'observation de départ est que les constructions usuelles de l'algèbre
homologique fournissent non seulement des groupes de cohomologie, des

suites exactes longues, des suites spectrales, mais en général un peu plus: des

complexes avec une certaine indétermination. Pour préciser ce point,
Grothendieck introduit la notion suivante, fondamentale pour toute la suite: si

L - (...-> L' L/+1 M -* M1 ~>Mi+l ->...)

sont des complexes d'une catégorie abélienne et u:L~+M un morphisme de

complexes, on dit que u est un quasi-isomorphisme si H'u:HiL-> H1M est

un isomorphisme pour tout z. Les complexes obtenus en pratique sont «bien
définis à quasi-isomorphisme près».

A titre d'illustration, revenons sur la définition des faisceaux images

directes supérieures R '/* E, où / : X- Y est une application continue entre

espaces topologiques et E un faisceau abélien sur X. On choisit une résolution

0 7°-+/1

(i.e. un quasi-isomorphisme E^I), où les In sont des faisceaux abéliens

injectifs, on considère le complexe /*/ déduit de / par application terme à

terme du foncteur image directe /*, et l'on «définit» Rlf*E comme le

z'-ème faisceau de cohomologie de /*/,
R'f*E: s* •

Si E-+I* est une seconde résolution de E par un complexe à composantes

injectives, il existe un morphisme de résolutions /->/' (i.e. un morphisme de

complexes /->/' compatible aux augmentations E-+I, E->I'), qui est une

équivalence d'homotopie; le morphisme /*/- /*/' qui s'en déduit par

application de /* est encore une équivalence d'homotopie, a fortiori un quasi-
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isomorphisme: on obtient ainsi un système transitif d'isomorphismes entre les

r// V*/, et l'on peut, plus canoniquement, définir R'f*E comme la limite

(inductive, disons) de ce système. Parfois, on préfère «calculer» Rlf*E en

utilisant d'autres types de résolutions. Supposons qu'on ait une résolution

E-* C, où les composantes de C (C0-* C1-*...) sont acycliques pour /*,
i.e. telles que Rqf*Cn 0 pour tout q > 0 (et tout n ^ 0) (par exemple une

résolution flasque, ou une résolution par des faisceaux mous, ou une résolution
de Cech relative à un recouvrement ouvert convenable). Il existe alors un

morphisme de résolutions C~* I, qui n'est plus en général une équivalence

d'homotopie, mais qui, grâce à l'hypothèse faite sur C, est tel que /*/
est encore un quasi-isomorphisme. On a donc äfr 'f^C^R'f^E (d'où
d'ailleurs un système transitif d'isomorphismes entre les '/* C relatifs aux
divers choix de C). Mais la construction donne plus: la famille des complexes

/*C associés aux résolutions à composantes acycliques pour /*, qui forment
une seule classe «à quasi-isomorphisme près». Plus précisément, deux tels

complexes /* C, /* C' sont reliés par des quasi-isomorphismes

/*C/*/«-/* C". La connaissance de cette classe est bien sûr plus fine que
celle des R '/* E, elle permet par exemple de reconstituer les groupes de

cohomologie Hn(X,E) comme groupes d'hypercohomologie H"( Y, f*C) (ce

qui donne naissance à la suite spectrale de Leray de /, nous reviendrons sur
ce point plus loin).

1.3. C'est sans doute ce type de considérations qui a amené Grothendieck à

proposer la construction suivante, très naturelle, mais révolutionnaire à

l'époque: C(A) désignant la catégorie des complexes d'une catégorie
abélienne A, former la catégorie D(A) déduite de C(A) «en inversant formellement

les quasi-isomorphismes». Cette nouvelle catégorie s'appellera «catégorie

dérivée» de A; le «Joncteur dérivé total» droit (resp. gauche) d'un
foncteur additif F:A^ B devra être un certain «prolongement» de F en un
foncteur RE (resp. LE) de D(A) dans D(B), redonnant les R*F (resp. LlF)
par application de H1.

La construction de D(A), ou plutôt du couple formé de D{A) et du foncteur
C(A) D(A) comme solution d'un problème universel pour les foncteurs de

C(A) dans une catégorie D transformant quasi-isomorphismes en isomor-
phismes, ne pose pas de problème. Toutefois, Verdier observe qu'il est
techniquement plus commode de passer par l'intermédiaire de la catégorie, notée
K(A), dite des complexes à homotopie près (qui a mêmes objets que C(A), mais
où les flèches sont les classes d'homotopie de morphismes de complexes), et
d'effectuer la «localisation» en deux temps:
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C(A) -> K(A) - D(A)

le premier revenant à inverser formellement les homotopismes (ou équivalences

d'homotopie), le second les (classes d'homotopie de) quasi-isomorphismes. La
catégorie D(A) a encore mêmes objets que C(A). L'avantage de passer par
K(A) est qu'au lieu qu'une flèche u:L -> M de D{A) soit définie par une chaîne

de flèches de C(A) de longueur arbitraire

L... ,*-M
(où les flèches allant dans le «mauvais» sens sont des quasi-isomorphismes),
u s'écrit comme une «fraction» u fs~1 ou u t~ lg, où /, s, t, g sont des

flèches de K(A), et s, t des quasi-isomorphismes. Plus précisément, D(A)
s'obtient à partir de K(A) par un «calcul de fractions bilatère»: les quasi-

isomorphismes de K(A) forment une catégorie filtrante I, et

(1.3.1) HomD{A){L,M) limHomK{A)(L,M')
i

(énoncé analogue «de l'autre côté»), cf. [17, I §§3, 4].

1.4. Les catégories K(A) et D(A) sont additives, mais ne sont pas en général

abéliennesl). Cet inconvénient est pallié, dans une certaine mesure, par
l'élément de structure fourni par la famille des «triangles distingués». Un

triangle de K{A) (resp. D{A)) est une suite de morphismes de K(A) (resp. D{A))

L^M^N~+L[1]
(où L[l] est le complexe défini par L[l]' Li+1, dL[x] - dL), notée aussi

N

+/ \
L M ;

on a une notion évidente de morphisme de triangles. On dit qu'un triangle est

distingué s'il est isomorphe au triangle standard défini par le cône C(u) d'un

morphisme de complexes u:E^ F,

E^F^C(u)-^E[1]

où C(u)' Ei+l ©T7', dC(u) ~ dE + u + dF, i:F-> C(u) est l'injection

En fait, on peut montrer (Verdier, non publié) que K(A) (resp. D(A)) n'est abélienne

que si A est semi-simple (i.e. telle que toute suite exacte courte de A se scinde).
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naturelle, et p:C(u)^E[ 1] est Y opposé de la projection naturelle. Par

exemple, une suite exacte courte de complexes

donne naissance à un triangle distingué de D(A),
caractérisé par le fait que

soit un morphisme de triangles, où s1 est le quasi-isomorphisme donné par j
sur L' et 0 sur L'l+l ; alors Hid:L"1 ->Z/' + 1

est l'opérateur bord habituel de

la suite exacte longue de cohomologie (ceci explique le signe de p choisi plus

haut).
Les triangles distingués de K(A), D(A), et de catégories qui s'en déduisent

naturellement (sous-catégories pleines définies par des conditions de degré ou
de finitude, catégories «quotients» obtenues par inversion formelle de

certaines flèches) ont en commun un certain nombre de propriétés
remarquables, que Verdier axiomatise en introduisant la notion de «catégorie
triangulée». Une catégorie triangulée est une catégorie additive D, munie d'un
automorphisme dit de translation, noté IkL[ 1], et d'une famille de triangles
dits distingués, soumis aux axiomes suivants, que nous recopions pour la
commodité du lecteur (cf. [17], [VI2]):

(Tl) Tout triangle de D isomorphe à un triangle distingué est distingué. Pour
Id

tout objet L de D, le triangle L L 0 -+ L [1] est distingué. Tout morphisme
de T est contenu dans un triangle distingué L M-+ N-+ L[l].

U U w
(T2) Un triangle L M~> N~* L[ 1] est distingué si et seulement si le triangle

U w - w [ 1 ]

M-*N-*L[Ï\ -* M[1] est distingué.

(T3) Tout diagramme de D

L ~ M N L[l]

L'»- MN' "-£'[!]
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où les lignes sont des triangles distingués et le carré est commutatif, se complète
en un morphisme de triangles.

(T4) Pour tout couple de flèches u:L -+ M, v:M^> N de D et tout triplet de

triangles distingués

L^M^N'-+L[1] M^N-+L,Z>M[l]N-+ -+ [1]

il existe des flèches a\N' -> M' et b : M' L ' telles que (ldL,v,a) et (u, Idyv,&)
soient des morphismes de triangles et que le triangle

a b x[l]-y
N'[ 1]

soit distingué.

L'axiome (T4) s'appelle souvent axiome de l'octaèdre, en raison de la figure
obtenue, où les quatre triangles hachurés sont commutatifs, et les quatre autres

distingués :

Dans la catégorie D(A), (T4) résulte d'un cas particulier du fait qu'une injection

de suites exactes courtes de complexes s'insère dans un diagramme des
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neuf (suite exacte courte de suites exactes courtes); Verdier remarque d'ailleurs

que dans une catégorie triangulée, tout carré commutatif se prolonge en un

«diagramme des neuf» [1, 1.1.11].
Une structure un peu plus faible que celle de catégorie triangulée,

comprenant les axiomes (Tl) à (T3) mais non (T4), a été dégagée pour la

première fois, semble-t-il, par Puppe [25], pour exprimer les propriétés de la

catégorie homotopique stable.

1.5. Un foncteur additif F:A~+B entre catégories abéliennes se prolonge de

façon naturelle en un foncteur additif F:K(A) -> K(B), transformant triangles
distingués en triangles distingués. Ce dernier, par contre, ne transforme pas

en général quasi-isomorphismes en quasi-isomorphismes, donc ne se prolonge
pas en un foncteur de D(A) dans D(B). C'est ce défaut qui est à l'origine de

la définition (de Grothendieck-Verdier) des foncteurs dérivés «totaux»1): un
foncteur dérivé droit de Fest un couple formé d'un foncteur RF: D(A) - D(B)
et d'un morphisme m:F^> RF (entre foncteurs de K(A) dans D(B)),

universel en un sens évident (à savoir que, pour tout couple (F':D(A) -» D(B),
m':F^> F'), il existe un unique morphisme u:RF~>F' tel que m' um); de

même, un foncteur dérivé gauche de F est un couple formé d'un foncteur
LF:D(A) ~+D(B) et d'un morphisme m : LF -> F possédant une propriété
universelle analogue.

Le formalisme des catégories triangulées — et notamment la théorie de
«localisation» qu'il y développe — fournit à Verdier un cadre commode pour
l'étude de l'existence et des propriétés de transitivité des foncteurs dérivés. Le
plus souvent, le dérivé droit RF n'est pas défini sur la catégorie D(A) tout
entière, mais seulement sur la sous-catégorie pleine D + (A) formée des objets
à cohomologie bornée inférieurement (qui est aussi la catégorie déduite de
K+ (A) (formée des complexes à degré borné inférieurement) par inversion
des quasi-isomorphismes): plus précisément, c'est le problème universel
analogue relatif à F:K+ (A) K+ (B) qui admet une solution. C'est le cas par
exemple si A possède suffisamment d'objets injectifs (i.e. tout objet de A se
plonge dans un objet injectif); alors H'RF est le /-ième foncteur dérivé

') Ce qualificatif (destiné à marquer la distinction avec les foncteurs «traditionnels»R F, L'F) ne s'emploie plus guère aujourd'hui.

K(A) D(A)

F

K(B) D(B)
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«usuel» R'F; de plus RF transforme triangles distingués de D + (A) en

triangles distingués de D + (B); si 0 L' -» L -> L" 0 est une suite exacte

courte de complexes (appartenant à K+ (A)), on en déduit (cf. 1.4) un triangle
distingué L' -> L L" -> L'[\] de D(A), d'où un triangle distingué
RFL'->RFL-+RFL"^>RFL'[1] de D(B), et Hid:RiFL" -+ Ri+lFL' est

l'opérateur bord usuel. Le prototype de cette situation est le cas où F est le

foncteur image directe /* des -^--modules vers les ^y-modules, où

f:X~+ Y zst un morphisme d'espaces (voire de topos) annelés. Le principe de

la définition de RF est simple: pour LeK+(A), on choisit un quasi-
q

isomorphisme L->/, où IeK + (A) est à composantes injectives (il en existe
si A admet assez d'injectifs), et l'on «pose» RFL FI, m Fq : FL -> FI.
Quand de plus F est de dimension cohomologique finie (ce qui veut dire qu'il
existe un entier A/" tel que R'F 0 pour i> N), alors RF zst défini sur la
catégorie D(A) tout entière. De manière analogue, le dérivé gauche LF n'est défini
le plus souvent que sur la sous-catégorie pleine D ~ (A) formée des complexes
à cohomologie bornée supérieurement (qui est aussi la catégorie déduite de

K~ (A) (formée des complexes à degré borné supérieurement) par inversion
des quasi-isomorphismes). La situation est en fait moins bonne que pour les

dérivés droits, car il est rare que A possède suffisamment de projectifs; le

prototype est le cas du foncteur F f* pour un morphisme / comme ci-
dessus: bien qu'il n'y ait pas, en général, assez de projectifs dans la catégorie
des _^y-modules, on parvient à définir Lf*:D~(Y)-+D~(X) (où D(-)
désigne la catégorie dérivée de celle des ^-modules), en «posant»

Lf*L f*P, où P-+L est un quasi-isomorphisme avec P à composantes
plates et à degré borné supérieurement.

Si G.B^C est un second foncteur additif entre catégories abéliennes,

alors, sous des hypothèses convenables, on a un isomorphisme de transitivité

R(GF) X çrg) CRF) (resp. L(GF) X ÇLG) (LF))

entre foncteurs de D + (A) dans D + (C) (resp. de D~(A) dans D~(C)) (voire
de D(A) dans D(C)). Pour les dérivés droits, c'est le cas par exemple si B
possède assez d'objets injectifs et F transforme injectifs de A en objets

acycliques pour G (i.e. sur lesquels R'G 0 pour / > 0). A titre
d'illustration, on peut prendre pour F le foncteur /* de tout à l'heure et pour G le

foncteur sections globales r(Y, -) (car l'image directe d'un injectif est

flasque). L'isomorphisme T(Y, f*E) — T(X,E) se dérive alors en

RT(Y,Rf*L) - RT(X,L) (LeD + (X))



TRAVAUX DE J.-L. VERDIER 377

C'est la formule à laquelle j'ai fait allusion à la fin de 1.2, et qui, par la suite

spectrale des foncteurs composés, fournit la suite spectrale de Leray de /
Epg HP(Y, Rqf*L) => H*(X, L)

Au lieu de partir d'un foncteur additif F\A~* B, on peut considérer plus

généralement un foncteur exact F:K(A) K{B) (ou K*{A) -> K(B), * +

ou -), «exact» voulant dire additif et transformant triangles distingués en

triangles distingués, et définir de manière analogue les notions de dérivés droit
et gauche de F. On peut aussi considérer des multifoncteurs
K(A{) x x K(An) - K(B) covariants en certains arguments et contra-
variants en les autres, et étendre la théorie des foncteurs dérivés à ce cadre.

Le formalisme des foncteurs dérivés fournit une interprétation intéressante
des homomorphismes dans la catégorie dérivée. Si A possède assez d'injectifs,
le bifoncteur «complexe des homomorphismes»

Horn' :7^(A)° x K{A) -> K(Z) (L, M) ^ Hom'(L,M)

(où C(Z) désigne la catégorie des complexes de groupes abéliens et C° la
catégorie opposée à une catégorie C) se dérive en un bifoncteur

£Hom:D(A)° x D + (A) -+ D(Z)

et l'on a un isomorphisme canonique

HomD{A)(F,M) H°RHom(F,M)

pour FeD(A), MeD + (A). En pratique, cette formule est beaucoup plus
utile que (1.3.1). Si A est la catégorie des -^-modules sur un espace (ou
topos) annelé, on peut en effet analyser le second membre à l'aide du foncteur
dérivé RMom du foncteur Mom («complexe des faisceaux d'homomor-
phismes de ^-modules»): la formule T(X, Mom'(F, M)) Horn (L, M) se
dérive en

RY(X, RMom{F, M)) — i?Hom(L, M)

(pour F ED~{X),MeD + {X)), d'où

(*) HomDW(L, M) - H*(X, RMom {F, M))
(0-ième groupe d'hypercohomologie de X à valeurs dans le complexe
RMom {F, M))\ des informations sur les faisceaux de cohomologie de L et M
permettent alors, grâce à (*), d'obtenir, par diverses suites spectrales, des
renseignements sur le groupe HomD{X)(L,M), parfois de le calculer
complètement.
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Deligne a introduit dans (SGA 4 XVII 1.2) une notion légèrement différente
de foncteur dérivé, un peu plus souple en ce qu'elle permet de parler de «déri-
vabilité en un point» (i.e. en une valeur donnée de l'argument). Dans la plupart
des cas, elle coïncide néanmoins avec la notion précédente.

1.6. Si A est une catégorie abélienne, A se trouve plongée de façon naturelle
dans la catégorie dérivée D(A), comme sous-catégorie pleine formée des

complexes concentrés en degré zéro. Ce n'est pas le seul exemple d'une

catégorie abélienne plongée dans la catégorie dérivée. La théorie des faisceaux

pervers en fournit d'autres, non triviaux. Pour l'étude systématique de ces

plongements, le formalisme des catégories triangulées s'avère être un outil
efficace, comme le montrent Beilinson-Bernstein-Deligne-Gabber [1] (pour un
historique de la théorie des faisceaux pervers et une vue d'ensemble de ses

développements, je renvoie le lecteur au rapport de Kleiman [22]).

1.7. Dans une catégorie triangulée D, toute flèche u:L~+ M admet, d'après

(Tl), un «cône» TV, i.e. s'insère dans un triangle distingué L -> MTV-> L[\].
Il résulte des autres axiomes que N est unique à isomorphisme près, cet isomor-
phisme n'étant toutefois pas unique. Si u:L~+ M, u'\L' -> M' sont des bases

de triangles distingués de troisièmes sommets N, TV', tout morphisme des bases

se prolonge, d'après (T3), en un morphisme de triangles, mais le morphisme
des cônes correspondant N-+N' n'est pas unique, et il n'existe pas a priori
de choix canonique (en fait, comme le montre Verdier dans sa thèse, l'existence

d'un «foncteur cône» imposerait des restrictions draconiennes à D: par
exemple, siD D{A la catégorie abélienne A serait semi-simple). Cette difficulté

est à l'origine de la théorie des catégories dérivées filtrées [18, V], où la

construction cône, non fonctorielle, est remplacée par celle de gradué associé,

qui l'est. Ce formalisme et ses généralisations jouent un rôle essentiel dans la

théorie de Hodge mixte de Deligne (cf. [5], [6], et, plus récemment, [26], [27]).

Il n'a toutefois pas été dégagé de structure axiomatique jouant vis-à-vis des

catégories dérivées filtrées le même rôle que les catégories triangulées vis-à-vis
des catégories dérivées ordinaires.

2. Dualité

Comme on l'a dit au début, ce sont les théories de dualité qui ont constitué

la motivation initiale pour l'introduction des catégories dérivées. Elles en ont

fourni aussi les applications les plus remarquables.
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2.1. La première de ces théories à voir le jour est celle développée par

Grothendieck pour les faisceaux cohérents sur les schémas, dans ses notes [15],

base du séminaire de Hartshorne [17]. Rappelons brièvement en quoi consiste

ce formalisme. Si X est un schéma, notons D(X) la catégorie dérivée de celle

des ^-modules, et, si X est noethérien, DC(X) la sous-catégorie pleine

formée des complexes à cohomologie cohérente. Pour tout morphisme

lissifiable1) f:X-*Y entre schémas noethériens, Grothendieck définit un

foncteur

/!:Dc+(7)-iW)
avec un isomorphisme de transitivité

f s

pour un composé X -> YZ (vérifiant une condition de cocycle pour un

composé de trois morphismes), de telle manière que

(2.1.1)

^ | /*M(x) Çldx/Y[d] si / est lisse de dimension relative d

\RMom g? M) | X si / est une immersion fermée

(c'est une sorte de miracle que ces deux définitions, en apparence si

dissemblables, puissent «se mettre ensemble»!). Si / est propre, et X, Y de

dimension de Krull finie, le foncteur Rf% est défini sur D(X). Grothendieck
définit alors, moyennant certaines hypothèses supplémentaires (par exemple

que / se factorise en une immersion fermée suivie de la projection d'un espace

projectif standard) un morphisme fonctoriel, qu'il appelle «morphisme trace»,

Try.Rf*r-M-+M (MeD +(Y))

faisant de f- un adjoint à droite «partiel» de Rf*, i.e. donnant lieu à un
isomorphisme, dit de dualité globale.

(2.1.2) Horn(L, f!M) -> Horn(Rf*L, M) (LeDc(X), MeD + (Y)) ;

ces morphismes traces vérifient bien entendu des compatibilités convenables
avec les isomorphismes de transitivité indiqués plus haut. Si Y est le spectre
d'un corps k, si X est lisse de dimension d, alors, pour M k et L réduit à

un seul faisceau cohérent placé en degré - f, on retrouve le théorème de dualité
de Serre [28]

l) I.e. qui se factorise en une immersion fermée suivie d'un morphisme lisse (nous nous
plaçons dans ce cadre pour simplifier, d'autres types d'hypothèses sont envisagés dans [17]).
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Extrf-'(jL, Q.dx/k) => Hom(H'(X, k)

2.2. Dans le même temps, en collaboration avec Artin et Verdier, Grothen-
dieck développe la cohomologie étale. Les résultats clés de la théorie étant

acquis (cohomologie des courbes, changement de base propre, pureté cohomo-

logique pour les couples lisses), il bâtit alors un formalisme de dualité analogue

au précédent. On fixe cette fois un anneau A Z/azZ, n premier aux
caractéristiques résiduelles des schémas envisagés, et l'on travaille avecria-catégorie
dérivée D(X) des faisceaux de A^-modules (pour la topologie étale) sur X.
Pour f:X^> Y lissifiable, Grothendieck définit un foncteur

fl:D + (Y)^D + (X)

(avec un isomorphisme de transitivité comme plus haut pour un composé), de

telle manière que

(2.2.1)

r/*M(x) \ifd[2d] si / est lisse de dimension

/!M= relative cP)

R^bmAr(Ax,M)\X RT si / est une immersion

k
fermée2)

Là encore, c'est un miracle (dû au théorème de pureté) que ces deux définitions
se réunissent. Sous des hypothèses supplémentaires convenables (par exemple,
si / se factorise en une immersion (non nécessairement fermée) suivie de la

projection d'un espace projectif standard), on dispose du foncteur image
directe à supports propres Rf[:D(X)^>D(Y)3), et Grothendieck définit
encore un morphisme trace

Yt/.RfJ'M^M (MeD + (Y))

faisant de f- un adjoint à droite partiel de Rf\, i.e. donnant lieu à un

isomorphisme, dit de dualité globale,

(2.2.2) Hom(L, f]M) ^ Hom(RfiL, M) (LeD(X),MeD +(Y)) 4)

1) \xn désigne le faisceau des racines n-ièmes de l'unité.
2) Tx désigne le faisceau des sections à support dans X.
3) Ce foncteur n'est pas le dérivé du foncteur f\ : R°f\ (SGA 4 XVII 6.1.6).
4) La démonstration initiale de Grothendieck est exposée par Verdier dans [V5]. Une

formule un peu plus générale est établie par Deligne dans (SGA 4 XVIII).
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Si Y est le spectre d'un corps algébriquement clos, et si X est lisse de dimension

d, alors, prenant L Ax[i], M A y, on obtient un isomorphisme analogue

à l'isomorphisme de dualité de Poincaré pour les variétés topologiques:

Hld~\X, [ifd) ^HomZ/nZ), Z/nZ)

Les lignes qui précèdent ne donnent évidemment qu'une idée très incomplète

du formalisme construit par Grothendieck. Tant dans le contexte des

faisceaux cohérents que dans celui de la cohomologie étale, celui-ci comprenait
aussi une théorie des complexes dualisants et de dualité locale, un formulaire

L

reliant les foncteurs fondamentaux ^R^om^Rf* ,Lf* ,Rfi, /!) (que

Grothendieck a appelé depuis «les six opérations»)1), une théorie d'homo-

logie et de classes de cycles2).

2.3. De son côté (et toujours à la même époque), Verdier jette les bases d'un
formalisme analogue pour les faisceaux sur les espaces topologiques. Si X est

un espace topologique, notons D(X) la catégorie dérivée de celle des faisceaux

abéliens sur X. Soit f:X^> Y une application continue entre espaces

localement compacts. Le foncteur image directe à supports propres f\ admet

un dérivé droit Rfr.D + {X)^D + {Y)3). Supposons de plus que f\ soit de

dimension cohomologique finie (ou, ce qui revient au même, que la dimension
de la cohomologie à supports compacts des fibres de / soit uniformément
majorée). Alors Rf\ est défini sur D{X). Dans ce contexte, Verdier s'aperçoit
qu'on peut renverser la vapeur. Il observe qu'il n'est pas difficile de prouver
a priori l'existence (et l'unicité) d'un foncteur fliD + (Y) ->D + (JV) adjoint à

droite partiel de Rfx, i.e. muni d'un morphisme trace Rf<f1 -> Id donnant un
isomorphisme

(2.3.1) Horn (L, /!M) ^ Horn (Rf{ L, M) (LeD(X),MeD + (Y))

Le point est qu'on peut calculer Rf\L par un procédé fonctoriel «au niveau
des complexes», RfxL f\C\L), où C\L) est une résolution dépendant
fonctoriellement du complexe L, à composantes acycliques pour /,, et telle
que L i * f\Cl{L) soit exact en L; l'existence d'un adjoint à droite au foncteur
EI-* f\Cl(E) (i fixé, E faisceau abélien sur X) résulte de théorèmes de repré-

Dans le contexte cohérent, Rf, n'a été défini que plus tard, par Deligne [4].
2) Par un regrettable concours de circonstances, la théorie dans le contexte cohérent,

esquissée dans [14] et [15], n'a pas été reprise dans [17], et celle dans le contexte étale
(SGA 5, exposés oraux) n'a été rédigée que dix ans après (et publiée hors de SGA 5)
(SGA 4 1/2, La classe de cohomologie associée à un cycle), [VI1], [23].

3) Il n'y a pas ici de piège, cf. note 3) page précédente.
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sentabilité essentiellement triviaux (cf. [V7, 1.0], ou, plus généralement,

(SGA 4 XVIII 3.1.3)), et l'existence de /! en résulte aisément ([VI], [V4],
[V7], [11]).

L'isomorphisme de transitivité R(gf)\Rg\Rf\ fournit, par adjonction,
un isomorphisme (g/)!=> /!g!. Si / est l'inclusion d'un fermé, il découle

automatiquement de (2.3.1) que /! RYX | X (RTX dérivé du faisceau des

sections à supports dans X). Si / est la projection d'un espace Rm sur un
point, le calcul de la cohomologie à supports compacts d'une boule ouverte

implique, via (2.3.1), que / !Z Z[m], Plus généralement, on voit que, pour
f:X~+ Y «lisse de dimension relative m» (i.e. X localement produit de Y par
Rm), on a

(2.3.2) f]M= f*M® or [m]

où or est un faisceau de Z-modules localement libre de rang 1 (le «faisceau
d'orientation relative»)1). On retrouve ainsi des formules analogues à (2.1.1)
et (2.2.1). Bien entendu, lorsque X est une variété topologique de dimension

m, on déduit de (2.3.1) et (2.3.2) la dualité de Poincaré usuelle sous la forme
d'une suite exacte

0 - Ext1 (/Ç1 (X,Z), Z) Hm-'(Xor)- Hom Z), Z) - 0

En général, pour un espace localement compact X arbitraire (tel que Tc soit
de dimension cohomologique finie), on a une suite exacte analogue, avec

Hm~ l{X, or) remplacé par

HiiX):^ H-i(X,Kx)
où

(2.3.3) Kx: al Z,
(on note a la projection de X sur un point). Les groupes Hi(X) sont les

groupes d'homologie définis par Borel-Moore dans [2]. Ce sont aussi les

analogues des groupes d'homologie introduits par Grothendieck et auxquels

on a fait allusion plus haut. Si X est assez bon (par exemple, localement

ouvert dans un polyèdre fini), H*{X) coïncide avec l'homologie singulière
usuelle [Vil].

Le formalisme s'enrichit nettement lorsqu'on travaille dans la catégorie des

schémas de type fini sur C (resp. des espaces analytiques complexes). On

l) Voir [V4, §5] pour un énoncé un peu plus général; le lecteur souhaitant reconstituer
la démonstration pourra s'aider des techniques de (SGA 4 XVIII 3.2), où est traité l'analogue
en cohomologie étale.
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dispose alors de la notion de faisceau abélien algébriquement (resp. analyti-

quement) constructible (i.e. tel qu'il existe une suite décroissante de fermés de

Zariski (resp. fermés analytiques) X — X0 D X\ D X2 D telle que la

restriction du faisceau donné à X,-— Xi+\ soit un faisceau localement1)

constant de type fini). La sous-catégorie pleine Db{X) de D(X) formée des

complexes à cohomologie bornée et constructible se trouve alors être

miraculeusement stable sous les «six opérations» f*,Rf*, fl ,Rf\, ®
RMom [Vil]. De plus (toc. cit.), le complexe Kx (2.3.3) est un complexe

dualisant, i.e. tel que, si Dx désigne le foncteur RMbm( - ,KX), la flèche

naturelle

(2.3.4) L -> DXDXL

soit un isomorphisme (pour tout L eDb(X))', enfin, le foncteur D
L

«échange» ® et R&om, f* et fl,Rf* et Rf\. Des résultats analogues

en cohomologie étale pour les schémas de type fini sur un corps k de caractéristique

p avaient été établis par Grothendieck (pour p 0) dans (SGA 5 I),
puis la restriction sur p (due à l'usage de la résolution des singularités) fut levée

par Deligne (SGA 4 1/2 Th. finitude); les arguments de [Vil] sont d'ailleurs
essentiellement les mêmes.

2.4. Le principe de la construction a priori de /! comme adjoint a été utilisé

par Verdier pour la première fois, je crois, pour établir une théorie de dualité

pour la cohomologie des groupes profinis [V3]. Il fut ensuite repris et adapté

par Deligne dans le contexte des faisceaux cohérents [4] et dans celui de la

cohomologie étale (SGA 4 XVIII): il permet de définir f- pour / «compac-
tifiable»2) plutôt que «lissifiable». Dans le contexte cohérent, le calcul de /!
pour / lisse est assez délicat: il est esquissé dans [4], des compléments sont
donnés par Verdier dans [V9].

Mentionnons également deux autres contributions de Verdier aux
formalismes de dualité, l'une, en collaboration avec M. Artin, sur la cohomologie

étale des corps de nombres [V2], l'autre, en collaboration avec Ramis
et Ruget, sur la cohomologie des faisceaux cohérents sur les espaces
analytiques complexes [VIO].

2.5. Une des applications les plus remarquables de la dualité est la
découverte, par Verdier, d'une formule de Lefschetz très générale pour les

1) Pour la topologie classique (non celle de Zariski!)
2) I.e. qui se factorise en une immersion ouverte suivie d'un morphisme propre.



384 L. ILLUSIE

«correspondances cohomologiques». Cette formule vaut dans plusieurs
contextes. Plaçons-nous, pour fixer les idées, dans celui de la cohomologie
étale.

Soit X un schéma propre sur un corps algébriquement clos k de

caractéristique p, fixons un nombre premier / distinct de p, soit L un
Qz-faisceau constructible1) sur X, et donnons-nous un £-endomorphisme /
de X et «un relèvement de / à L», i.e. un homomorphisme u: f*L -+L. Le

couple (/, u) définit un endomorphisme (/,«)* de H*(X,L), à savoir le

composé de /* : H*{X,L)~* H*{X, f*L) et de u:H*(X, f*L)-> H*(X,L), et

l'on peut considérer le «nombre de Lefsehetz»

Tr (f,u):£t^l)'Tr((/,M)*|/T'(XT))eQ,.
Soit Xf le schéma des points fixes de /. Verdier montre dans [V6] que

Tr(/,w) est somme de termes «locaux» attachés aux composantes connexes
de Xf:

(2.5.1) Tr(/,«)= lxe%0(xf) vx(f

Le terme vx(f, u) ne dépend que du comportement de L et (/, u) au voisinage
(étale) de x. Quand X est une courbe propre et lisse et que les points fixes de

/ sont isolés et transversaux (i.e. qu'en chacun d'eux le graphe de / est

transverse à la diagonale), Artin (cf. [V6]) prouve que l'on a, pour tout
xeXf,
(2.5.2) vAf,u) Tt(!4x:Lx-+Lx)

On a donc, dans ce cas,

(2.5.3) Tr(/, u)V v, Tr

Dans (loc. cit.), la formule (2.5.1), dans le cas général, n'était démontrée que
sous des hypothèses «de bidualité», satisfaites néanmoins dans le cas où X
est une courbe propre et lisse. Leur validité (dans le cas général) fut établie

plus tard par Deligne, comme on l'a signalé à la fin de 2.3. D'autre part,
Grothendieck, indépendamment, et par une autre méthode («Nielsen-
Wecken»), avait prouvé (2.5.3) (et des généralisations au cas de points fixes

non transversaux), cf. (SGA 5 XII). Rappelons que, comme Grothendieck l'a
montré, la formule (2.5.3) entraîne la formule des traces pour la
correspondance de Frobenius (en toute dimension), d'où découle la rationalité des

1) Pour la notion de Q/-faisceau constructible, voir (SGA 5 VI) (ou, pour un résumé,
[16] ou (SGA 4 1/2 Rapport §2)).
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fonctions L généralisées ([16], (SGA 5 XIV)) (voir aussi (SGA 4 1/2 Rapport)

pour une présentation compacte de la démonstration de Grothendieck).

On ignore si la formule (2.5.3) est encore valable pour dimA > 1 (sous

l'hypothèse que A est propre et lisse et que le graphe de / est transverse à la

diagonale). Deligne propose la conjecture (plus faible) suivante. Supposons

que k soit la clôture algébrique d'un corps fini F^, que X provienne par

extension des scalaires d'un schéma A0 propre et lisse sur F^, et (/, w) de

(/o,Wo) sur Yg. Soient Fr^: A->X le /r-endomorphisme de Frobenius et

F: Fr%L - L la correspondance de Frobenius définis par (A0,L0) (cf. [16] ou

(SGA 5 XIV)). Pour n ^ 0, on peut considérer le composé

Fn(f,u) : (Frnxf:X^X, uFn: f*Frnx*L -> PL -> L)

Comme la dérivée de Fr^ est nulle, dès que n ^ 1, les points fixes de Frnxf

sont isolés et transversaux, quel que soit l'endomorphisme / donné. Deligne

conjecture qu'il existe n0 tel que pour n ^ n0 on ait

(2.5.4) Tr(Fn(f,u)) £ Tr(uF«:Lx^Lx)

la somme étant étendue aux points fixes de Frnxf. La conjecture est

démontrée pour (f,u) égal à l'identité, avec n0 1, d'après Grothendieck

(loc. cit.), et aussi lorsque l'on a dimA 1 et que le graphe de / est transverse
à la diagonale, avec n0 0, comme on vient de le rappeler. Le cas général

reste ouvert. En fait, Deligne a formulé des variantes et généralisations de la

conjecture précédente, dans le cas non propre. Sous certaines hypothèses

techniques, elles ont été établies par Zink [29] dans le cas des surfaces1);
Gabber a proposé dernièrement une stratégie dans le cas général, à partir des

propriétés contractantes du Frobenius du point de vue £>-adique.

Le principe de la démonstration de (2.5.1) est très simple: interpréter
l'endomorphisme (f,u)* de F[*(X,L) comme une classe de cohomologie sur
le produit A x A (à support dans le graphe T/ de /), et sa trace comme
«intégrale» d'un «cup-produit» avec la classe de l'identité (à support dans la

diagonale A), d'où une classe à support dans A^ Tf n A, dont l'intégrale
se décompose suivant les morceaux de Xf. Plus précisément, Verdier établit
ce qu'il appelle un «théorème du noyau» [V8], qui est un analogue du classique
théorème du noyau de Schwartz. Rappelons brièvement l'énoncé de ce

b (Ajouté en mai 1990) et (sous certaines hypothèses également), en dimension
quelconque, par Pink [R. Pink, Lefschetz- Verdier trace formula for cohomology with
compact support, preprint, Bonn, 1990], et, indépendamment par Shpiz [E. Shpiz, Harvard
thesis, en préparation].
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théorème1), pour montrer comment interviennent naturellement les

catégories dérivées, là où a priori il semblerait qu'on n'en ait pas besoin. Soient

X et Y des schémas propres sur k,L e Db(X),M e Db{Y) (où Db désigne la

«catégorie dérivée des Qrfaisceaux, à cohomologie bornée, constructible) (le

cas qui nous intéresse est X Y, et L M un Qrfaisceau constructible).
Par la formule de Kùnneth et le théorème de dualité globale (variante /-adique
de (2.2.2)), on a

(2.5.5) Uom(RT(X,L),RT(Y}M))^Hom(prfLfpr2M)

où prx\X xY-*X, pr2\X x Y-* Y sont les deux projections; noter d'ailleurs

que le premier membre se récrit plus simplement Hom(//*(2C L),H*(Y,Af)),
vu que RT(X,L) et RT{Y,M) sont des complexes d'espaces vectoriels. Le
«théorème du noyau» affirme qu'on a un isomorphisme

(2.5.6) Horni(pr*L,pr2M) H°(X x Y,pr*DxL ®pr*M)
où Dx est l'analogue du foncteur envisagé en (2.3.4), i.e. RMom{-,KX),
Kx a1 Qi (on note a la projection de X sur Spec/:). La construction de

(2.5.6) est un jeu sur la dualité, utilisant notamment (mais pas uniquement)
le fait que Dx est dualisant. Remarquons que dans le cas qui nous intéresse,

bien que L soit juste un Qrfaisceau, DXL est un complexe qui n'est pas, en

général, concentré en un seul degré, même si X est lisse, à cause des singularités
éventuelles de L. L'endomorphisme (/,«)* de H*{X,L) correspond, par
(2.5.5) et (2.5.6), à une classe dans H°(X x X,prfDxL(g)pr$L), et

même, comme on le montre sans peine, à une classe à support dans le graphe

Af de /:
c(f, u) e H°T/(X x X, pr*DxL ® pr*L)

L'identité donne de même une classe à support dans la diagonale

c(Id) e H°a(X x X,prfL (x) pr%DxL)

Ces deux classes ont, de façon naturelle, un produit dans

H°xf{X x X, KXxX), et la trace de (/,w)* n'est autre que l'image de ce

produit par le «morphisme Tr» qui envoie

trxf{XxX,KXxX)(=

dans Q/. La formule (2.5.1) en résulte aussitôt. Il y a, évidemment, un grand
nombre de compatibilités à vérifier, voir (SGA 5 III) pour les fastidieux

1) En cohomologie /-adique, cf. [V6].
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détails. Nous nous sommes placés dans le cadre des «Qrfaisceaux» pour
éviter des difficultés liées à la définition de la trace Tr(/, u) lorsqu'on travaille

avec des coefficients du type Z/lnZ (difficultés qui se résolvent elles aussi par
l'usage des catégories dérivées, grâce à la notion de «complexe parfait»,
cf. loc. cit.). Mais la définition de Dbc(X,Qi), qui n'est pas une catégorie
dérivée à proprement parler, pose aussi des problèmes techniques (voir [7], ou
[9] pour un développement systématique du formalisme /-adique).

2.6. Je voudrais, pour terminer, évoquer deux résultats de Verdier sur la
dualité, qui datent du début des années 80, et qui se sont révélés très utiles.
L'un concerne le complexe d'intersection, l'autre la transformation de Fourier.
Eux aussi sont valables dans divers contextes, plaçons-nous dans le cadre

/-adique de 2.5.

a) Soit (k, /) comme en 2.5. Soient Xun schéma de type fini sur k, supposé,

pour simplifier, intègre et de dimension d, et a:X->Spec(£) le morphisme
structural. «Entre» — si l'on ose dire — le faisceau constant (Q/)* et le

complexe dualisant Kx: alQh qui sont duaux l'un de l'autre (au sens du
foncteur dualisant Dx RMom(-, Q/)), figure le «complexe
d'intersection» Jfé£x de Goresky-McPherson-Beilinson-Bernstein-Deligne-Gabber,
qui est défini par

-Ä»ii*Qild]
où j:Uo> X est l'ouvert (dense) de lissité de et y,* le foncteur «prolongement

intermédiaire» [1], Verdier a montré que ce prolongement de

(Q/)i/[cfl est caractérisé (dans Dhc(X)) par la propriété d'être auto-dual (pour
Dx) (et à une torsion à la Täte près), et de vérifier la condition de support
suivante:

dimSupp pour

cf. [1, 2.1.17],

b) Soient Vunespace vectoriel de dimension finie sur le corps fini F? de
caractéristique p, V' son dual. Un caractère additif non trivial t|/ de F, étant
fixé, Deligne a construit une «transformation de Fourier»

MX.Dbc(V,Q,)^Dbc(V\Q,)

«induisant» la transformation de Fourier «usuelle» sur les fonctions sur
UF?) lorsqu on associe à un faisceau E sa fonction trace
xeK(F,)^Tr(F.EX), cf. [19], [21], [24], Verdier a montré que cette
transformation commute à la dualité, voir par exemple [21, 2.1.5] pour un
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énoncé précis. Ce résultat (et ses variantes) a eu une portée considérable:
estimations uniformes de sommes exponentielles [21], formule du produit pour
les constantes locales des équations fonctionnelles des fonctions L sur les corps
de fonctions [24].

Signalons encore d'autres travaux récents de Verdier sur la transformation
de Fourier, en liaison avec les faisceaux pervers et les cycles évanescents ([VI3]
à [V18]).
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Note sur la bibliographie

La thèse de Verdier sur les catégories dérivées n'a pas été publiée. Verdier a pourtant
rédigé, dans les années soixante, un long manuscrit, couvrant la plus grande partie du
sujet. On ne peut que souhaiter qu'il paraisse un jour. En attendant, la référence
classique reste le début du séminaire Hartshorne [17], combiné avec le fascicule de
résultats de Verdier [VI2] et le texte de Deligne (SGA 4 XVII §§1, 2). Diverses questions
de signes sont examinées dans [8]. Le lecteur trouvera dans [1] d'importants
compléments sur les catégories triangulées et les catégories dérivées. Enfin, à l'intention
du débutant, signalons deux textes récents, à vocation pédagogique: [12], et [20, I], plus
étoffé, et agrémenté d'exercices.
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