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MORDELL CONJECTURE 403

Proof. Let s and ¢ be elements of A(S). Define the map g: 4 = A by
g =mo(id, tof)(g(x) = x + 1(f(x))). Then g*:H}p(A/S) = Hpp(A/S) is
the identity so that g*M(e,s) = M(e,s) on the one hand and
g*M(e,s) = M(t,s + t) by Proposition 1.3.2 on the other. Hence,

M(s) + M(t) = M(e,s) + M(e, ) = M(t,s + ) + M(e,t) = M(e,s + 1)
by Proposition 1.3.1. [

Let (B, 1) denote the K(S)/K trace of A (see [L-AV]). In particular, B
is an Abelian scheme over K and t:B X spec(K(S)) = Ak is @ homomor-
phism. Since K has characteristic zero T is a closed immersion. Philosophically,
B is the largest constant Abelian subscheme of Aks) defined over over K. The
morphism 1 extends uniquely to an S-morphism T:B X xS — A. It follows
that B(K) maps naturally into A(S). We call the elements s of A (S) such that
ns 1s in the image of B(K), the constant sections of A/S.

PROPOSITION 1.4.2. The kernel of M contains all constant sections
of A/S.

Proof. Let s be a constant section of A/S. Then there exists a positive
integer n such that ns = t1o(¢ X id) where ¢t € B(K). Hence it follows from
the above theorem, Proposition 1.3.2 and Proposition 1.3.4 that
nM(s) = M(ns) = M(T(t X id)) = T*M(t X id) = 0. Since

Ext(H pg(4/5),K[S])

is uniquely divisible, by Corollary 1.1.2, the proposition follows. ]
We wish to prove the conserve of this proposition. I.e. we wish to prove:

THEOREM 1.4.3.  The kernel of M is precisely the group of all constant
sections of A/S.

We will give two proofs of this result. The first is Algebraic. The second
is analytic and is essentially a reformulation of Manin’s proof based on
remarks by Katz [K2] in a letter to Ogus.

5. THE ALGEBRAIC PROOF

a. Differentials with logarithmic singularities

(See [K] §1.0). Suppose X is a smooth scheme over a scheme 7 and Z
is a hypersurface in X whose irreducible components are smooth over 7 and
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cross normally relative to 7. Let W = X — Z and Z the disjoint union of the
irreducible components of Z. Let (Q,,(Log(Z)),d) denote the complex of
differentials on X/T with logarithmic singularities along Z. (When T = K, we
drop 7 from the notation.) When T has characteristic zero, which we will now
assume, the i-th hypercohomology group of this complex is naturally
isomorphic to H jJR(W/ 7). We have a natural short exact sequence of
complexes

. . Res .
0— Q7 Qy(Log(Z)) = Q% ,,(-1)—=0
From which, upon taking cohomology, we obtain the long exact sequence:

(5.1) 0 = Hpp(X/T) = Hpg(W/T) = HYp(Z/T) = Hpp(X/T)
~ Hyp(W/T) = Hpr(Z/T)

In addition, we have a short exact sequence of complexes
0- Q5 ® Q/s(Log(2)) (- 1) = Qx(Log(2)) ~ QY s(Log(2)) = 0 .

The boundary maps in the long exact sequence of hypercohomology obtained
from this short exact sequence are the Gauss-Manin connections
V:H, ,(W/S) = Q¢ ® HY,(W/S). Moreover the long exact sequence (5.1) is
horizontal with respect to all the Gauss-Manin connections.

If D is any divisor on X, let n#(D) denote the cohomology class of D in
H%R(X/T). Recall ([H-DR; 7.7)), if £ is an ordered affine open cover of C
and {fy} is a Cech one-cochain with with coefficients in 7, with respect
to % such that the divisor of fy is the restriction of D to U, then n(D) is
the cohomology class represented by the hyper one-cocycle
(0,{dc,7Log(fu.v)},0), where fu v = fu/ fr(U< V). Suppose now that T is
affine. Then H%R(Z/ 7T) is naturally isomorphic to the group of divisors on X
supported on Z with coefficients in K[77].

LEMMA 1.5.1. Suppose D is a divisor on X supported on Z, then
the image of D in H?DR(X/T) via the appropriate map in (5.1) is equal
to nr(D).

Proof. This is essentially Proposition 7.6 of [H]. We carry out the proof
in order to ‘‘straighten out’’ the sign.

Let £ be an affine open cover of X and {fy}is a Cech one-chain with
coefficients in _#x with respect to % such that the divisor of fy is the
restriction of D to U. Then, dLog(fy) € Qﬁ(/T(Log(Z))(U) and
Res(dLog(fy)) is the image of the image of D in H(Z/T) = Z53(U). It
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follows that the image of D in H 2DR(X/ T) is the class of the hyper-
coboundary of ({dLog(fv)},0) which is n(D) by definition. [

By a properly semi-stable curve over S, we mean a curve over S such that
the irreducible components of the closed fibers are smooth and cross normally.
(The irreducible components do not have to be smooth if the curve is only semi-
stable.)

COROLLARY 1.5.2. Suppose R isasmooth connected curve over a field
K and X is a properly semi-stable curve over R smooth over K.
Suppose U is a non-empty open subset of R and Y = R — U. Then the
kernel of the natural map from H5g(X) into Hpr(Xy) is generated by
{(n(D)} where D runs over the irreducible components of Xy.

Proof. This follows from the lemma and the exact sequence (5.1), since
the closed fibers of C/T are unions of smooth hypersurfaces of C which cross
normally. [

LEMMA 1.5.3. With notation as in the above corollary, if R is affine
and X is smooth over R then the map from H» (X)— Hpe(Xy) is an
injection.

Proof. For a closed point x of R, let X, denote the fiber above x. Since
all the fibers of X over S are smooth, it follow from the corollary that the
the kernel of the map HéR(X) - HéR(XU) is generated by {n(X,)} where x
runs over the closed points of Y. Now n(X,) is the pull-back of
n(x) € H?DR(R). As this latter group is zero, this proves the lemma. []

b. End of algebraic proof

First by using the functoriality of M, Proposition 1.3.2, and the fact that
every Abelian variety over S is the quotient of a Jacobian over S we may
assume that A is the Jacobian of a smooth proper curve C over S. By
Proposition 1.1.1 and the long exact sequence (2.3), Ext(H}JR(C/S)v,K[S])
maps naturally into H%R(C). Moreover, since C is a proper smooth
connected curve over S, H,,(C/S) is canonically isomorphic to H }JR(C/S)V.
The fact we need to finish the proof is:

PROPOSITION 1.5.4. Let s and t be two elements of C(S). The
class n(t—s) is equal to the image of M(s,t) in HéR(C).

By the previous lemma and the functoriality of n we may shrink S to sup-
pose that s N ¢t = &. To prove the proposition, we need the next lemma.
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Suppose now that 7= S,Z = s U t and X = C. Then the exact sequence
(5.1) becomes:

(5.2) 0 = Hpp(C/S) = Hpp(W/S) = HY(Z/S) = H2.(C/S) = 0

Furthermore HéR(C/S) 1s canonically isomorphic to K[S] with generator
Ns(s) = ns(¢) and so the kernel of H%R(Z/S) ——>H53R(C/S) 1s a principal
K[S] module with generator D = s — ¢. Using this generator, (5.2) yields an
extension By, of the connection (K[S],d) by (HL(C/S), V).

LEMMA 1.5.5. Identifying H\o(C/S)  with HL.(C/S), the
extension B, Is isomorphic to the dual of E,.

Proof. Regarding the complexes Qg 5, and Qg (Log(Z)) as
subcomplexes of Q5 , the wedge product gives a product from

Q.C/S.Z X Q.C/S(Log(z))
into Q,; which induces a pairing
(,): Hpp(C/S,Z) X Hypp(W/S) = H:(C/S) = K[S] .

This pairing is compatible with the exact sequences

0— HYC, Q) = Hx(C/S, Z) = H'(C,Q%,5) = 0
0= H(C, Qg s(Log(Z)) = Hpr(W/S) = HY(C, £¢) = 0

arising from the Hodge to de Rham spectral sequences for hypercohomology
(which degenerate). In other words, the image of H(C, Q) in Hz(C/S, Z)
is perpendicular to the image of H(C, Q. s(Log(Z)) in H p,(W/S) and if we
identify Q5% , with Z¢(Z) and Qg ,s(Log(Z)) with Q¢ s(—Z) the pairings
induced on H(C, Q,5) X HY(C, #¢) and on

HY(C, Q% ;) X H(C, Q¢,5(Log(2)))

are the natural ones. Since these pairings are non-degenerate, it follows that
the pairing on H})R(C/S, Z) X H}JR(W/S) 1S non-degenerate.

It is also clear that the image of H),(Z/S) = K[Z] in Hx(C/S, Z) is
perpendicular to the image of H,(C/S) in H,,(W/S) and that the pairing
induced on HL.(C/S) X Hp,(C/S) is the natural one.

The lemma will follow from the following claim: Let 1 denote the map from
KI[Z] to Hi,(C/S, Z) and Res the map from H ,(W/S) to K[Z]. Let Tys
denote the trace from K[Z] to K[S]. Suppose ¢ € K[Z] and ® € H,,(W/S).
Then
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(1(c), w) = — Tzss(cRes()) .

Indeed, if s*c =0,¢*c = 1, Resq(w) =1 and Res,(w) = — 1 then
— Ty,5(cRes(w)) = 1.

To prove this claim we may shrink S. Hence, we may assume first that
{U, V(U< V) is an ordered affine open cover of C such that U = C — s and
V = C -1, second that 1(c) is represented by a hypercocycle of the form
0({gv,gv}) where s*gy = s*c and t*gy = t*c and third, since the composi-
tion H(C, Q¢ (Log(Z)) = Hpx(W/S) = K[Z] is surjective, that w is in the
image of H(C, Q¢,s(Log(Z))), i.e., w is represented by a hypercocycle of
the form ({wy,w0y},0) where wy=w=wy on UnV for some
w € H'(C, Q¢,s(Log(Z))). It follows that (i(c),w) as an element of
Hpp(C,Qp ) = Hp,(C/S) is represented by the cocycle {vy y} with
vu v = (g — gu). Since the image of this element in K[S] is

Res,(— gyw) + — Res,(gyw) = — (s*gyRess(w) + t*gyRes,())
= — Tr/s(cRes(w)) .

this establishes the claim and the lemma. [

End of proof of Proposition 1.5.4

Consider the commutative diagram of complexes of sheaves with exact
rows and columns

0 0 0
! ! !

0 - Q;®Qr,(—1) = - - Q6 - 0
! ! !

0 = Qs®Qcs(Log(2)(=1) = Q(Log(C)) = Qp/s(Log(Z) — 0
! ! !

0~  Q®Qys(-2) ~Qy(-1) - Q,(-1) -0
! ! !
0 0 0.

If we take hyper-cohomology of this diagram we obtain a commutative
diagram




408 R. F. COLEMAN

Hpo(C/S) = Q5 ® H pp(C/S)

! !
Hpo(W/S) = QL ® Hpr(W/S)
!
H%R(Z) — HODR(Z/S)
! !

Hpg(C/S) = QL ® Hpp(C/S) = Hap(C) = Hop(C/S)

with exact rows and columns in which the bottom row is part of the Leray
long exact sequence. Let a be the element in H%R(Z) corresponding to the
divisor s — . The image of ¢ in H%R(C) is n(s — ¢) by Lemma 1.5.1. On the
other hand the image of a in H%,(Z/S) is our chosen generator of the kernel
of the map to HéR(C/S). In particular, it is the image of an element b of
Hp,(W/S) and V(b) is the image of an element ¢ of Q;@HIDR(C/S)
whose image in HfDR(C/S) is the same as that of a by an elementary diagram
chase. On the other hand, the image of ¢ in H'(H,,(C/S), V) is the class
corresponding to the extension B, by definition (see Proposition 1.1.1)
which is, after identifying H.,(C/S) with H..(C/S)’, — M(s, 1) by
Lemma 1.5.1 and Lemma 1.5.3. Hence the image of M(s, f) in in H%R(C) 1S
—n(s—1¢) =n(—s) as required. [J

Now we are in a position to prove the Theorem 1.4.3. We will suppose
M(s, t) = 0 which amounts to ns(f — s) = 0 by the Proposition 1.5.1. Recall,
that A is the Jacobian of C/S. Let d denote the divisor class of # —s in |
A(K(C)). We will show that the canonical height of d is zero. We may replace
S by a finite étale cover and complete C to a properly semi-stable curve C
over the completion S of S which is smooth over K. Let D be a Q-rational
divisor on C which is perpendicular (under the intersection pairing) to all the
irreducible components of all the fibers of C/S and whose restriction to C
is t —s. Such a divisor exists by the function field analogue of Theorem 1.3
of [Hr] (see also Theorem 5.1 (i) of [Ch]). It follows that the image of n(D)
in Hy,(C) is n(¢t — s) = 0. Corollary 1.5.2 implies that n(D) is in the span of
{n(Y)} where Y runs over the irreducible component of the closed fibers above
C-C. In particular, D - D = 0 using Theorem 7.8.2 of [H]. On the other
hand, D-D is —2 times the canonical height of d by the function field -
analogue of Theorem 5.1 of [Ch]. It now follows from Theorem 5.4.1 of [L],
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that the image of #—s in J(C) is a constant section which completes the
proof. [

6. THE ANALYTIC PROOF

In this section we will suppose K = C.

a. The Poincaré Lemma

Suppose (&, V) is a sheaf on S%* with integrable connection. Then by the
Poincaré lemma for integrable connections, it follows that the complex of
sheaves

S50l Q@ FI0L,. ® S ...

is a resolution of the sheaf & V. Hence,

PROPOSITION 1.6.1. Hi(%, V) is naturally isomorphic to H(S, &V).

Remark. As in Proposition 1.1.1, H!Y(%, V) 1is isomorphic to
Ext(% ", #sm). We can describe the isomorphism from H!(, V) to
HI(S, & V) explicitly as follows: Let 4 be an element of H!(%, V). Let £
is a covering of S by open disks. Suppose % is an extension of & by .Zun
corresponding to #. Then % is an extension of Z%w» by & For each
U e %, there exists an sy € & (U)” which maps to 1 in _Zs..(U). Then the
image 4 in H'(S, V) is the class of the cocycle {(U, V)= sy — sy}.

Suppose, X is a smooth proper S-scheme and Z is a subscheme of X which
is either empty or finite over S. We will define the Betti homology sheaf
' \(X/S,Z,Z) on S as follows. If Z is smooth over S, we define
W/ (X/S, Z,Z) to be the sheaf associated to the presheaf

U= H(f '), f"(U)nZ1Z),

(this latter group is the Betti homology of f ~!'(U) relative to f~Y(U) N Z).
More generally, let S* be a non-empty affine open subset of S such that
Z' = 7Z xXsS'is étale over S'. Let X' = X XS’ and let 1 denote the inclusion
morphisms X' = X, Z"— Z and S’ = S. We set

HX/S,Z, L) =\ (X'/S',Z',Z) .
This is independent of the choice of S’. We also set

V(X/S,T) = AUX/S, D7) and H\(X/S,Z,C) = &1(X/S,2,2) Q C .
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