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Proof. Let s and t be elements of A(S'). Define the map g:A A by

g mo(idjof)(g(x) x+ t(f(x))). Then g*:HlDR(A/S) HlDR(A/S) is

the identity so that g*M(e, s) M(e, s) on the one hand and

g*M(e,s) M(t,s + t) by Proposition 1.3.2 on the other. Hence,

M(s) + M(t) M(e, s) + M(e, t) M(t 5 + /) + M(e, t) M{e, s + t)

by Proposition 1.3.1.

Let (B, t) denote the K(S)/K trace of AK{S) (see [L-AV]). In particular, B

is an Abelian scheme over K and t:B x spec(i^T(5)) AK{S) is a homomor-
phism. Since K has characteristic zero t is a closed immersion. Philosophically,
B is the largest constant Abelian subscheme of AK{S) defined over over K. The

morphism x extends uniquely to an S-morphism t:BxkS~*A. It follows
that B(K) maps naturally into A (S). We call the elements s of A (S) such that
ns is in the image of B(K), the constant sections of A/S.

Proposition 1.4.2. The kernel of M contains all constant sections

of A/S.

Proof. Let 5 be a constant section of A/S. Then there exists a positive
integer n such that ns xo(Yx id) where t e B(K). Hence it follows from
the above theorem, Proposition 1.3.2 and Proposition 1.3.4 that
nM(s) - M{ns) M(f{t x id)) x*M(t x id) 0. Since

is uniquely divisible, by Corollary 1.1.2, the proposition follows.

We wish to prove the conserve of this proposition. I.e. we wish to prove:

Theorem 1.4.3. The kernel of M is precisely the group of all constant
sections of A/S.

We will give two proofs of this result. The first is Algebraic. The second
is analytic and is essentially a reformulation of Manin's proof based on
remarks by Katz [K2] in a letter to Ogus.

5. The algebraic proof

a. Differentials with logarithmic singularities

(See [K] §1.0). Suppose A" is a smooth scheme over a scheme T and Z
is a hypersurface in X whose irreducible components are smooth over T and
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cross normally relative to T. Let W X — Z and Z the disjoint union of the
irreducible components of Z. Let (Q^/r(Log(Z)), d) denote the complex of
differentials on X/T with logarithmic singularities along Z. (When T K, we
drop T from the notation.) When J7has characteristic zero, which we will now
assume, the z-th hypercohomology group of this complex is naturally
isomorphic to HlDR(W/T). We have a natural short exact sequence of
complexes

0 Çïx/T ^x/r(Xog;(Z)) — Q Z/T( ~~ 1) 0

From which, upon taking cohomology, we obtain the long exact sequence:

(5.1) 0 - HXDR{X/T)-HXDR(W/T)--
- H2DR(W/T) -» H2DR(Z/T)

In addition, we have a short exact sequence of complexes

0 Qls <g> Q^/s(Log(Z))(- 1) -* Q*(Log - Q^/s(Log(Z)) - 0

The boundary maps in the long exact sequence of hypercohomology obtained

from this short exact sequence are the Gauss-Manin connections

X :HlDR(W/S) -> Qls (x) HlDR{W/S). Moreover the long exact sequence (5.1) is

horizontal with respect to all the Gauss-Manin connections.

If D is any divisor on X, let r\ T(D) denote the cohomology class of D in
H2dr(X/T). Recall ([H-DR; 7.7]), if Sê is an ordered affine open cover of C
and {fu} is a Cech one-cochain with with coefficients in j0a with respect

to Sê such that the divisor of fv is the restriction of D to U, then rir(D) is

the cohomology class represented by the hyper one-cocycle

(0,{dC/r'Log(fUtv}},0)f where fu>v fv/fv(U< V). Suppose now that Tis
affine. Then H°DR(Z/T) is naturally isomorphic to the group of divisors on X
supported on Z with coefficients in K[T\.

Lemma 1.5.1. Suppose D is a divisor on X supported on Z, then

the image of D in H2DR(X/T) via the appropriate map in (5.1) is equal
to t\t(D).

Proof. This is essentially Proposition 7.6 of [H]. We carry out the proof
in order to ''straighten out" the sign.

Let Sf be an affine open cover of X and {fu} is a Cech one-chain with
coefficients in Jfx with respect to such that the divisor of fa Is the

restriction of D to U. Then, dLog(fu) e Qlx/r(Log(Z))(U) and

Res(dLog(/c/)) is the image of the image of D in H°DR(Z/T) It
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follows that the image of D in H2DR(X/T) is the class of the hyper-

coboundary of ({<iLog(/<y)}, 0) which is r|r(D) by definition.

By a properly semi-stable curve over S, we mean a curve over S such that

the irreducible components of the closed fibers are smooth and cross normally.

(The irreducible components do not have to be smooth if the curve is only semi-

stable.)

Corollary 1.5.2. Suppose R is a smooth connected curve over afield
K and X is a properly semi-stable curve over R smooth over K.

Suppose U is a non-empty open subset of R and Y =» R - U. Then the

kernel of the natural map from H2DR(X) into H2DR(XV) is generated by

{r|(T>)} where D runs over the irreducible components of XY.

Proof. This follows from the lemma and the exact sequence (5.1), since

the closed fibers of C/T are unions of smooth hypersurfaces of C which cross

normally.

Lemma 1.5.3. With notation as in the above corollary, if R is affine
and X is smooth over R then the map from H2DR{X) H2DR(XV) is an

injection.

Proof. For a closed point x of R, let Xx denote the fiber above x. Since

all the fibers of X over S are smooth, it follow from the corollary that the
the kernel of the map H2DR(X) H2DR(Xu) is generated by |r|(Av)} where x
runs over the closed points of Y. Now r\ (Xx) is the pull-back of
rj(x) e H2dr(R). As this latter group is zero, this proves the lemma.

b. End of algebraic proof

First by using the functoriality of M, Proposition 1.3.2, and the fact that
every Abelian variety over S is the quotient of a Jacobian over S we may
assume that A is the Jacobian of a smooth proper curve C over S. By
Proposition 1.1.1 and the long exact sequence (2.3), Ext(/F^(C/S,)V,^T[5])
maps naturally into H2DR(C). Moreover, since C is a proper smooth
connected curve over S,HlDR(C/S) is canonically isomorphic to HlDR(C/S)
The fact we need to finish the proof is:

Proposition 1.5.4. Let s and t be two elements of C{S). The
class r\(t — s) is equal to the image of M(s,t) in H2DR(C).

By the previous lemma and the functoriality of r| we may shrink S to
suppose that 5 n t 0. To prove the proposition, we need the next lemma.
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Suppose now that T — S,Z s u t and X — C. Then the exact sequence
(5.1) becomes:

(5.2) 0 HlDR(C/S) - HlDR(W/S)-- H2DR(C/S) -» 0

Furthermore H2DR(C/S) is canonically isomorphic to A'[5] with generator
t\s(s) hs(0 and so the kernel of H°DR(Z/S) -> is a principal
K[S] module with generator D s - t. Using this generator, (5.2) yields an
extension Bs t of the connection (ÄT[S],<i) by (HXDR(C/S), V).

Lemma 1.5.5. Identifying HXDR{C/S) with HXDR(C/S), the
extension Bs>t is isomorphic to the dual of ESJ.

Proof. Regarding the complexes &C/s,z and Q'c/s(Log(Z)) as

subcomplexes of Q w/s>z the wedge product gives a product from

^c/s.z ^ ^c/s (Log(Z))

into Q^/s which induces a pairing

):HlDR(C/S,Z)x Hxdr{W/S) - tf[S]

This pairing is compatible with the exact sequences

0 - HHC, Q'c/S) - Hxdr(C/S,Z)- HHC, Q°x/S) - 0

0 - HHC, Q; ,(Log(Z)) - H-H\C, - 0

arising from the Hodge to de Rham spectral sequences for hypercohomology
(which degenerate). In other words, the image of H°{C, Q^/s) 1n ^XDR(C/S, Z)
is perpendicular to the image of H°{C, Q^/5(Log(Z)) in HXDR(W/S) and if we

identify Q°xz with jfc(Z) and Oc/s(L°g(^)) with ^c/s(-Z) the pairings
induced on H°(C, Q[/s) x Hl(C, J?c) and on

HHC,Ci°x,z)X H*(C, OLs(Log(Z)))

are the natural ones. Since these pairings are non-degenerate, it follows that
the pairing on HXDR(C/S,Z) x HXDR(W/S) is non-degenerate.

It is also clear that the image of H°DR(Z/S) K[Z] in HXDR(C/S,Z) is

perpendicular to the image of HXDR(C/S) in HXDR(W/S) and that the pairing
induced on HXDR(C/S) x HXDR(C/S) is the natural one.

The lemma will follow from the following claim: Let i denote the map from

K[Z] to Hxdr(C/S,Z) and Res the map from HXDR{W/S) to K[Z\. Let TZ/s

denote the trace from K[Z] to K[S]. Suppose c e K[Z] and co g Hxdr(W/S).
Then
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(i(c),w) - Tz/S(cRes (CO))

Indeed, if s*c 0, t*c 1, Res5(co) 1 and Res,(co) - 1 then

- rz/s(cRes(co)) 1.

To prove this claim we may shrink S. Hence, we may assume first that

{U, V}(U < V) is an ordered affine open cover of C such that U C - s and

V C - t, second that i(c) is represented by a hypercocycle of the form
9({&u,g>}) where s*gu s*c and t*gv t*c and third, since the composition

H°(C, Qj-yS(Log(Z)) -> HlDR(W/S) -+ K[Z] is surjective, that w is in the

image of HQ(C, Q^/s(Log(Z))), i.e., w is represented by a hypercocycle of
the form ({00^/,coK}, 0) where <x>u co ov on UnV for some
co e H°(C, Qc/s(Log(Z))). It follows that (i(c), w) as an element of
HlDR(C,Q c/s) — H2dr(C/S) is represented by the cocycle {vu.v} with

Vu,v (gv~gu)co. Since the image of this element in Ä"[5] is

Res,(-gt/Co) + - Resf(gyco) - 0>*gt/Res5(co) + t*gvResr(co))

— — TV/s (cRes (co))

this establishes the claim and the lemma.

End of proof of Proposition 1.5.4

Consider the commutative diagram of complexes of sheaves with exact
rows and columns

0 0 0

1 i 1

0 -> ^^(x)0^/s(-l) Q'c -> Q'c/S 0

i 1 i
0 — Qs<g>Qc/s(Log(Z))(-l) ^c(Log(C)) Qc/s(Log(Z) 0

i 1 I
0 —> Qs®Qz/5( — 2) — Qz(—1) -> Qz/S(— 1) —* 0

i 1 I

o 0 0

If we take hyper-cohomology of this diagram we obtain a commutative
diagram
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3ßi<g
I I

I

H°dr{Z) - HlR(Z/S)

i I

HlDR(C/S) - Qi ® HlDR(C/S)-H2dr(C)-^Lcc/S)

with exact rows and columns in which the bottom row is part of the Leray
long exact sequence. Let a be the element in H°DR(Z) corresponding to the

divisor s - t. The image of a in H2DR{C) is r\(s - t) by Lemma 1.5.1. On the

other hand the image of a in H°DR(Z/S) is our chosen generator of the kernel

of the map to H2DR(C/S). In particular, it is the image of an element b of
HlDR(W/S) and V(b) is the image of an element c of (x) HlDR(C/S)
whose image in H2DR(C/S) is the same as that of a by an elementary diagram
chase. On the other hand, the image of c in Hl(HlDR(C/S), V) is the class

corresponding to the extension Bs t by definition (see Proposition 1.1.1)
which is, after identifying HlDR(C/S) with HlDR(C/S) - M(s, t) by
Lemma 1.5.1 and Lemma 1.5.3. Hence the image of M(s, t) in in H2DR(C) is

- T[ (s - t) m r| (t - s) as required.

Now we are in a position to prove the Theorem 1.4.3. We will suppose

M(s, t) 0 which amounts to r\s(t - s) 0 by the Proposition 1.5.1. Recall,
that A is the Jacobian of C/S. Let d denote the divisor class of t - s in

A(K(C)). We will show that the canonical height of d is zero. We may replace
S by a finite étale cover and complete C to a properly semi-stable curve C

over the completion S of S which is smooth over K. Let D be a Q-rational
divisor on C which is perpendicular (under the intersection pairing) to all the

irreducible components of all the fibers of C/S and whose restriction to C
is t — s. Such a divisor exists by the function field analogue of Theorem 1.3

of [Hr] (see also Theorem 5.1 (i) of [Ch]). It follows that the image of r|(D)
in H2dr(C) is T|(t - s) 0. Corollary 1.5.2 implies that r|(T>) is in the span of
{rj(y)} where Y runs over the irreducible component of the closed fibers above

C - C. In particular, D • D 0 using Theorem 7.8.2 of [H], On the other

hand, D-D is - 2 times the canonical height of d by the function field
analogue of Theorem 5.1 of [Ch]. It now follows from Theorem 5.4.1 of [L],
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that the image of t — s in J(C) is a constant section which completes the

proof.

6. The analytic proof

In this section we will suppose K — C.

a. The Poincaré Lemma

Suppose (5^ V) is a sheaf on San with integrable connection. Then by the

Poincaré lemma for integrable connections, it follows that the complex of
sheaves

Qlsat> (X) 5^ Q2San ®

is a resolution of the sheaf 5^v. Hence,

Proposition 1.6.1. V) is naturally isomorphic to // v).

Remark. As in Proposition 1.1.1, LP(5^V) is isomorphic to

ExtWe can describe the isomorphism from V) to
HX(S, SZ v) explicitly as follows: Let h be an element of V). Let
is a covering of S by open disks. Suppose W is an extension of J0V by
corresponding to h. Then is an extension of j@San by 5^ Lor each

U e Sê, there exists an sy e Sf (U)v which maps to 1 in Then the

image h in Hl(S, 5^v) is the class of the cocycle {(U, V) -> sv - sv}.
Suppose, X is a smooth proper S-scheme and Z is a subscheme of X which

is either empty or finite over S. We will define the Betti homology sheaf

^[(X/S, Z, Z) on San as follows. If Z is smooth over S, we define

://i(X/S, Z, Z) to be the sheaf associated to the presheaf

U //,•(/ f ~l(U) n Z, Z)

(this latter group is the Betti homology of f~l(U) relative to f ~l(U) n Z).
More generally, let S' be a non-empty affine open subset of S such that
Z' Z x sS' is étale over S'. Let X' X xsSr and let i denote the inclusion
morphisms X' -» X, Z' -> Z and 5' - S. We set

M~i(X/S}Z,Z) \^i{X'/S\Z\T)
This is independent of the choice of S'. We also set

W](X/S, Z) àé^iX/S, 0, Z) and Z, C) - M~x(X/S, Z, Z) (x) C
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