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412 R. F. COLEMAN

II. PICARD-FUCHS EQUATIONS

We will give a proof of Mordell’s conjecture for function fields using
Theorem 1.4.3 above. This theorem is weaker than Manin’s Theorem of the
Kernel (Theorem 2.1.0, below). In an appendix, we will give Chai’s demonstra-
tion of Theorem 2.1.0 and show how Manin used it to complete his proof.

1. PICARD-FUCHS DIFFERENTIAL EQUATIONS

Let f: X — S be a smooth proper morphism with geometrically connected
fibers over K. Let wy,s = H(X, Q). Let Z be a subscheme of X finite
over S whose normalization is smooth over S. Then wy, s injects naturally
into both Hp,(X/S) and H},(X/S,Z) such that the obvious diagram
commutes. Let W denote the image of ® =: wy,s in H}JR(X/S).

Let s and ¢ be two sections of X/S, and Z = su ¢. It follows that, if
S # 1, H})R(X/S, Z) 1s an extension of H}JR(X/S) by K[S] with a section on
W. Hence we have an element N(s, 7) in Ext(H ,(X/S), .Z’s, W) which maps
to M(s, t) under the natural forgetful map from Ext(H})R(X/S), s, W) to
Ext(H p(X/S), 2%).

Now let & = : 2 denote the algebra of differential operators on S, i.e.
the free left algebra over K[S] generated by Derg = : Derg,x. Since Derg acts
on the sections of a connection on S so does <. Let PF = : PF(X/S) denote
the kernel of the natural map from & ® x50 (where here K[S] acts on &
on the right) into H}.(X/S). Clearly, PF is a left &/-module. We call the
elements of PF, Picard-Fuchs differential equations. The image of PF, under
the natural map from <& X k510 Into H})R(X/S, Z), lies in the image of
K[S]. We have the commutative diagram:

PF
N

IR w

N

K[S] = Hpp(X/S, Z) = Hpp(X/S)

If w € PF, call its image under the map to K[S] u(s, ¢). It follows from
Proposition 1.3.1 that
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(1.1) w(r,s) + p(s, 1) = nr, )

for r,s,t € X(S).

Suppose A/S is an Abelian scheme over S with origin section e. Then it
follows from Theorem 1.4.1 that if p € PF(A/S), s— u(e, s) is a homo-
morphism from A(S) into K[S].

Manin’s Theorem of the Kernel is:

THEOREM 2.1.0. Suppose se A(S). Then p(e,s)=0 for all
w e PF(A/S) iff s is a constant section.

We will now explain the connection between this theorem and
Theorem 1.4.3. Let w denote the natural map from Ext(H pg(X/S), Zs, W)

to Ext([W], Zs, W).

PROPOSITION 2.1.1. Suppose s,te X(S). Then u(s,t) =0 for all
we PF(X/S) iff woN(st)=0.

Proof. First, [W] is the image of & ® wy,s in Hpr(X/S). Hence, if
(s, t) = 0 for all p € PF(X/S), we can define a horizontal section from [W]
to E(s, ) by sending the image of an element of & ® wy,s in H})R(X/S) to
its image in E(s, ¢). This implies wo N(s, £) = 0. The other direction is just as
easy. LJ

Hence Manin’s Theorem of the Kernel is equivalent to:

THEOREM 2.1.0°. The class woN(e,s)=0 iff s is a constant
section of A/S.

On the other hand, it is easy to see that Theorem 1.4.3 is equivalent to this
statement with wo N(e, t) replaced by N(e, ). Thus Theorem 2.1.0 follows
from Theorem 1.4.3 in the case [W] = H,,(A/S), i.e.

PROPOSITION 2.1.2. Suppose [W] = H})R(A/S) and s € A(S). Then
wie,s) =0 forall nwe PFA/S) iff s is a constant section.

Remark. The error in Manin’s proof of Theorem 2.1.0 occurs in §6.2 on
Page 214 of [M]. The displayed equation on line 12 is false. To make this
statement true one must replace r with r°, (in Manin’s notation). In
Appendix 1, we give Chai’s proof that N(e, ) = 0 iff woN(e, t) = 0 which
together with Theorem 1.4.3 implies Theorem 2.1.0. However, we show below,
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that Proposition 2.1.2 is sufficient to prove the function field Mordell
conjecture.

We call the composition
HOX, QL ¢ )= HL(X/S) > QL @ HL (X/S) ~» QL ® H\(X, ) ,

where the maps on either end are natural ones, the Kodaira-Spencer map and
denote it by ky,s. An important special case of the previous proposition is
the one in which xy,s Is an isomorphism, since then

Qi@ W) D kx/sW=Qs® Hpp(X/S)

under the natural map and so, in particular, [W] = H,(X/S). It is well
known that if X is a family of curves over S and the Kodaira-Spencer map
1s zero then X/S is an isoconstant family, i.e., becomes constant after a finite
base extension.

PROPOSITION 2.1.3. Suppose Derg,x is spanned by 0 over KIS].
Suppose Kyx,s IS an isomorphism. There exists a K[S]-linear map from
Wy/s O PF

W € Dx/s ™ Ho,o = - Ho »

characterized by the condition that W, can be written in the form
X +O0RO +1 R w”, where ®' and ®" € wy,5. Moreover PF
is generated over </ by the image of this map.

Proof. The fact that (Qs® W) @ kx/sW = Qi ® Hpp(X/S) implies
that there exist unique elements ®” and " in Wsuch that 32 @ ® + 9 ® ®’
+ 1 ® 0" € PF. The K[S]-linearity follows from the uniqueness and fact that
for any v € wy,s, n € Zo and f € K[S], one may write f0” & v in the form
9" ® fv+ Y d®v; with v; € wy,s. The fact that PF is generated by

0<i<n

these elements is also clear. [

COROLLARY 2.1.4. Suppose Ders,x . is spanned by 0 over KIS].
Suppose ¥,,s is an isomorphism. Then

{s € A(S): po,0(e,5) = 0} = A(S)or -

Proof. This follows immediately from Theorem 2.1.2 since the only
constant sections in this case are torsion.
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