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EXCEPTIONAL POLYNOMIALS
AND THE REDUCIBILITY OF SUBSTITUTION POLYNOMIALS

by Stephen D. Cohen

1. Introduction

Let Fq be the finite field of prime power order q p\ Given a rational
function / /i//2, where (x) and f2(x) are co-prime polynomials in F^[x],
define the substitution polynomials cp/, cpj? in two variables x, y by

cpfix,y) - /2W/1W - /1M/2W and q>f(x, y) cpf(x, y)/(y - x). Usually,
in fact, / will simply be a polynomial (thus f fx) and always we assume,

without loss, that / is separable, i.e., /(d^F^F). If / g(h) is

functionally decomposable over Fq, then yf is divisible by (p/?, but reducibility of
substitution polynomials not attributable to this phenomenon is apparently
rare. Nevertheless, the concept of an exceptional polynomial (EP) calls for
such reducibility, at least over Fq, the algebraic closure of Fq. Specifically,
a polynomial f(x) in F9[x] of degree n > 1 is called exceptional over Fq

if none of the irreducible factors of cp* (x, y) over is absolutely irreducible,
i.e., remains irreducible over Fq. The importance of EPs derives from their
connection with permutation polynomials (PPs) of Fq. Briefly (see [8],
Chap. 7, § 4), every EP over Fq is a PP and, conversely, for sufficiently
large q (as a function of n) every PP is an EP. Moreover, infinite classes

of EPs are the most prominent in the list of known families of PPs

compiled by Lidl and Mullen [7].
We distinguish below four families of polynomials over Fq whose substitution

polynomials represent the chief examples of reducibility. These

comprise the well-known classes of cyclic polynomials (Cx), Dickson
polynomials (C2) and linearised polynomials (C3) together with a further (unnamed)

4
class C4 introduced in [1]. We denote their union (J Ct by C and call

i 1

the members of C C-polynomials. C-polynomials are the source of all known
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EPs with the understanding that those which are EPs can be combined by
composition with each other and with linear polynomials to yield further
EPs. Prompted by this last observation, we note that, because a composition

/ g(h) of polynomials over Fq is an EP if and only if both g

and h are, [2], it suffices to classify EPs which are polynomially
indecomposable. In group-theoretical terms, the restriction to indecomposable
polynomials has the great advantage that Gal (f{y) — z/Fq(z))9 the Galois

group of f(y) — z over Fq(z), where z is an indeterminate, is primitive as

a permutation group on its roots, [2].
For C-polynomials, the reducibility of their substitution polynomials

is of a fairly simple nature dominated by the existence (over F of linear
factors after the fashion we now indicate. As used in [1], a rational
function (usually a polynomial) / over Fq is called factorable if cpy(x, y)
splits completely into factors in Fq [x, y] which are linear (automatically
in both x and y). Ci-polynomials and C3-polynomials are obviously factorable.
C2-polynomials and C4-polynomials are not, since for these, cp^ is the

product over Fq of irreducible polynomials of the same degree d( > 1),

where d 2 if / is a Dickson polynomial. Nevertheless, they are "semi-

factorable", a term to which we give the following definition. A rational
function (here, always a polynomial) / is called semi-factorable if there
is a rational function r(x) in F^(x) such that the composition f(r) is

factorable over Fq. As illustrated by the Dickson polynomials, rational
functions r may genuinely be required even when / is a polynomial.
Slanting the above facts another way, we observe that for an indecomposable
C-polynomial /, Gal (f(y) — z/Fq{z)) has abelian socle and so is an affine

linear group (see [4]).

It was shown in [1] that, for any /(x) in Fq[pc], the product of the

linear factors in (py (its "factorable part") is wholly accounted for by the

existence of polynomials g(x), h(x) in Fq(x) with h factorable and cph (py

such that / g(h); explicitly, h Ld, where L is a linearised (or linear)
polynomial and d ^ 1. The main work of the present paper is an analysis

(aided by group theory) of indecomposable polynomials whose substitution

polynomials possess an irreducible quadratic factor over Fq. We shall

conclude that these all lie in C2 u C4; thus, in particular, no new EPs

arise in this way. The general treatment of substitution polynomials with
factors of higher degree appears to be very difficult. Here, as we illustrate
for polynomials with cubic factors, group theory seems to allow some

exciting possibilities for reducibility but whether these can ever be realised

for polynomials / is another question (which is not treated here). Almost
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certainly, as we shall see, an indecomposable EP / for which cp/ has a

cubic factor lies in C4 but whether this extends is unclear. More generally,
in connection with EPs two questions naturally arise.

(i) Are all indecomposable EPs over Fq semi-factorable

(ii) Are all indecomposable semi-factorable EPs C-polynomials

I would tentatively suggest that the answer to (ii) might be "yes" but
hesitate to speculate on the answer to (i).

2. The semi-factorable families

The classes Cl5 C2 and C3 are described briefly (see [8], for example).
More detail is given for C4.

Cx. Cyclic polynomials. These have the form cn(x) xn, where p J( n.

Obviously cn is factorable and is an EP (or PP) if and only if g.c.d.
(n, q— 1) 1. Trivially, of course, cn is indecomposable over if and only
if n is a prime / p).

C2. Dickson polynomials. For any n(>l) with p J( n and any a(^0)
in Fq, a typical member gn(x, a) has the shape

/ X

[ V?1 n fn~i\ T9n(x, a)y ; (-a)bc"~2'.
i o n — i \ i J

As in [13], over Fg we have

In/2]O <?gjx,y) (y-x) n
i 1

where a; Ç' + Ç ß,- C — CT being a primitive nth root of unity in
F, • Since each of the quadratic factors in (2.1) is irreducible, gn is not factorable.
Yet it is semi-factorable. Set R(x) gn{ra(x),a), where + ax"1.
Then, by equation (7.8) of [8],

R(x) ra„(c„(x))x" +
and hence

n — 1

y)PI C) -C'a).
i 0
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Thus R is factorable and gn semi-factorable.

From (2.1) we can easily deduce the familiar facts that gn is an EP

or PP if and only if (n, q2 — 1) 1 while the identity

9n,m(x>a)9n(gm(x, a), am)

((7.10) of [8]) yields the conclusion that gn(x9 a) is indecomposable over Fq

if and only if n is a prime ^ p).

C3. Linearised polynomials. These have degree n — p\k^ 1), a typical
specimen having the form

k

(2.2) L(x) Yj aixpl »

i 0

where a0, ake Fq with a0ak =£ 0. Because cpl(x, y) L(y-x), evidently L
is factorable and is an EP (or PP) if and only if L has no non-zero
roots in Fq. Suppose that L is given by (2.1) but that, for some

s ^ 1, at 0 unless s | i. Then, for any a e Fps and any ß e Fq9 we have

(2.3) L(ax+ß) aL(x) + ß,

and we refer to L as a ps-polynomial (cf. [8], § 3.4).

C4. Sub-linearised polynomials. These polynomials (for whom a better

title is requested) had their genesis in [1]. We construct a sub-linearised

polynomial S(x) of degree n p\k^l) as follows. Let L in C3 be a

ps-polynomial of degree pk and d(> 1) be an integer such that (p)() d\ps — 1.

Then L(x) xM(xd) for some M(x) e F^[x] and we set S(x) xM\x). Thus

S{xd) Ld{x),

or, equivalently,

(2.4) S(cd) cd(L).

The polynomial S as defined above will also be referred to as a (ps, d)-

polynomial. We note that, by (2.4) and Theorem 1.1 of [1], S(cd) is factorable
and hence S is semi-factorable.

We remarked in [1] that a (ps, ^-polynomial S(x) xMd(x) for which M
has no roots in Fq is an EP provided (d,p{s,t) — 1) 1. In fact, the last

condition is unnecessary and we state the definitive result as follows.

Theorem 2.1. Let S(x) xMd(x) be a (p\ d)-polynomial in Fg[x],
where d\ps — 1. Then
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(i) the irreducible factors of <pf over F„ all have degree d ;

(ii) Sis an EPover F„ ifand only if M has no roots in F4.

Proof, (i) Since d \ f- 1, then Ç, a primitive dth root of unity, lies

in FpS, and the non-zero roots of L(x) can be arranged in the

form lffyh,j 0,d—1, h**l,N},where N deg — 1 and

[ydh h=l,N} is the set of roots of M. By (2.3) and (2.4), we have

(p s{xd,yd)y)

U (L(y)-ÇL(x))
i 0

Pf L(y-fx)
i 0

{yd—xd)nn n l-cx-c
1 0 7 0 h= I

(2.5) (/-^) n "n n
t 0 7 0 /i l

Now, for any y in Fq, it is clear that the polynomial

d- 1 d-1
n n (o-^-y)
i=0 j=0

lies in Fg[xd, yd] and therefore may be written Py(xd, yd), where Py(x, y)

e F9[x, y] has degree d (in both x and y). We claim that Py is irreducible.
For suppose Py(x, y) has a non-constant factor Q(x, y) in F^[x, y]. Then

Q(x^,y<0 must be divisible by Qx — (jy — y for some i and j with
0 ^ i,j ^ à — 1. Q(xd, yd), however, is invariant under x Ç"x, y Çuy for

any u, v. It follows easily that Q(xd, yd) is divisible by Py(xd, yd) and we deduce

that Q Py, as required. Consequently, by (2.5),

<Ps(*>3') EI pyh(x,y)
h= 1

is the prime decomposition of (p* over Fq and (i) is proved.

(ii) Continuing with the same notation, we have

Py(xd,yd)(-l)d n (y
i 0

- l)d{~YJ2 -d(yd + (—x)d)yd(d~+.
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It follows that, if yd is a root of M and Py(x, y) lies in Fg[x, y]$ then
both yd2 and yd{d~l) are members of Fq, whence yd eFq. This means that S

is an EP unless M has a root yd in F^. The converse is clear and the
result follows.

3. Substitution polynomials with a quadratic factor

Throughout, let f(x) be an indecomposable polynomial in Fg[x] for
which cpf{xy y) is divisible by an irreducible quadratic factor Q(x, y) in
Fq[x,y]. Denote by Q* the factor of (p/? irreducible over F^ itself, that is

divisible by Q.

Lemma 3.1. Gal Q*(x, y)/Fq(x) has order deg Q* and so is regular as a

permutation group on the roots of Q*(x, y) over Fg(x) (see [72], p. 8).

Proof Let Fqd be the field generated over Fq by the coefficients of
d

Q (in Fq). Then ß* Y\ Qi> where Q:,..., Qd are the distinct conjugates
i 1

of g obtained by applying the d F^-automorphisms of Fqd to the coefficients
of g. Thus degg* 2d. But, evidently, the splitting field of g* over Fg(x)

can be constructed by adjoining the splitting field of Q to Fgd. Its Galois

group therefore has order 2d as required.
With Lemma 3.1 as a spur, we formulate some group theory in terms of

polynomials (see [2]). For an indecomposable polynomial g(x) in F^[x],
G Gal (g(y) — z/Fq(z)) is primitive. Moreover, the orbits of a point stabiliser
Gx of G correspond to the irreducible factors of <pg over F^; in particular,
when P(x, y) is such a factor of <yg so also is P(y, x) and the associated

orbits are "paired" (see [12], § 16). The following result is therefore a

(slightly weakened) version of [12], Theorem 18.6.

Lemma 3.2. With g and P as above, suppose that both Gal P(x, y)/Fq(x)
and Gal P(y, x)/Fq(x) are regular. Then Gal cp^x, y)/Fq(x) Gal P(x, y)/Fq(x).

Corollary 3.3. With f and d as in Lemma 3.1, (p* is a product
over Fq of irreducible polynomials of degree 2d, each of which is a product

of irreducible quadratics over Fq. Furthermore, all these quadratics have a

common splitting field over Fq(x).
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Proof. Lemmas 3.1 and 3.2 yield

Gal cp/Oo y)/Fq(x) Gal Q*(x, y)/Fq(x) ;

in particular the splitting field of cp/ is a quadratic extension of FC]d (x).
Since the latter of necessity is also a splitting field of any irreducible
factor Qi of (py over F^, we deduce that deggi ^ 2. But (p/ has trivial
factorable part (by [1]) and therefore Q± itself must be a quadratic whose

coefficients, by another application of Lemma 3.2, also generate Fqd. All
the assertions now follow.

Next, we reformulate for polynomials a theorem about "self-paired"
orbits ([12], Theorem 16.5) in which the group concerned need not be

primitive.

Lemma 3.4. Let g(x) be a (not necessarily indecomposable) polynomial
in F^[x] such that Gal (g(y) — z/Fq(z)) has even order. Then cp* has an
irreducible factor P over such that P(y, x) cP{x, y), where

c(A 0)eF,.
We are now ready for the climax.

Theorem 3.5. Let f(x) be an indecomposable polynomial in F^[x]
such that cpf is divisible by an irreducible quadratic over Fq. Then
f{x) a/*(x + ß) + y, where a(^0), ß, y e Fg and either /* is a Dickson
polynomial of odd prime degree (#p) or p is odd and f* is a
(p, 2)-polynomial in C4.

Proof. We can assume that / is monic of odd degree, the latter by
Corollary 3.3. The same result implies that Gal (f{y)-z/Fq(zj) has even
order. Thus, we may select for Q the "symmetric" irreducible factor of cp^

over Fqd (or Fq) predicted by Lemma 3.4. Actually, Q is quadratic (by
Corollary 3.3 again) and we may suppose it is monic in y.

The symmetry of Q means that either

P-1) Qfe y) y2 - X2 + a(y-x) + b, a, be Fq,

or

(3.2) Q(x, y) y2 - axy T x2 - b(y + x) + c, a,b, ce Fq.
We suppose Q is given by (3.1) and quickly dispose of this possibility.

As Q is absolutely irreducible q cannot be even. Further, since the
homogeneous quadratic part of Q divides yn - x\ the homogeneous part
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of (py of highest degree (a fact we will continue to use), we deduce that
y2 — x2 divides yn — xn. When q is odd, however, this implies that n is

even, a contradiction.
We may therefore suppose that Q is given by (3.2) (with a ^ 0 if q is

even). Let m be the largest divisor of n prime to p. From the homogeneous

parts of highest degree, we must have a Ç -f Ç-1, where Ç is an mth root
of unity in Fq. Because n is odd it follows, in particular, that a # 0,

even if q is odd. We distinguish two cases which lead ultimately to the

alternative conclusions of the theorem.

(i) a i=- 2. We show in this case that / is essentially a Dickson
polynomial. The argument is facilitated by a technical lemma of Turnwald [11]
which allows us to work only in Fq. Specifically, taking a a' y 1

and noting that this implies y' 1 in Lemma 3.1 of [11], we see that
it suffices to prove that p Jf n (i.e., m n) and f(x) gn(x + ß, A) + y, where

A( 7^ 0), ß and y g Fq.

Begin by setting ß a= b/(a — 2) and replacing f(x) by /(x + ß). This means
that we can assume that b 0 in (3.2) and also c ^ 0 (otherwise Q is

reducible). Now define ^4(^0) by c (a2 — 4)A (Ç —Ç_1)2A Recall from

Corollary 3.3 that <Pf(x,y) and every (quadratic) factor of (pf(x, y) have

a common splitting field K over F?(x). Regarding K as the splitting field
of Q, we have K F^(x, 0), where

0 V(x2 — A), if q is odd

(3.3) 02 + 0 A/x2 if q is even

(For q even this uses the ideas of [8], p. 379 and the fact that Fg is

algebraically closed.)
Next let Q\(x, y) be any irreducible (quadratic) factor of (pf{x,y). For

some mth roots of unity and Ç2 and blib2,c1 in Fq, we can write

Qi(x, y) y2 -(Ci +t,2)xy+ CiC2- b2x + c1,

which is "paired" with the monic factor Q\{x,y) x\Qi(y, x), where

r, Thus

2i (x,y)y2 - (Cr1 + Ç2 l)xy + r\x2 - r\b2y - -^b^x + rie!

For the moment suppose q is odd. The discriminant of Q1 (as a

polynomial in y) is

Ki~ Ci)2*2 + 2(&1(^1 + ^2) + 262)x + b\ — 4c1
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while that of Q\ is

Tr{(C-C)2*2 + 2(b2(ç1 + y+2b1ç1Qx +

By (3.3) these both must be a non-zero constant multiple of x2 — A. We

deduce that

(3.4) Çi 7^ Ç2

(3.5) ^iKÎ + CI) + 2b 2 62K1+Ç2) + 26^^ 0

and

(3.6) b\ — 4c1 b2 — 4^x^2ci c ^ 0.

From (3.5) b\ an<3 hence ÇXÇ2 1 by (3.6); thus b2 b\. If
b1 ^ 0, then (3.5) implies that Çi Ç2 ±1, contradicting (3.4). We

conclude that b1 b2 0, Ç2 CT1 an(3 c ^Ki — Ci"1)2- Since was

an arbitrary factor of %, it is clear from the expansion (2.1) that cp/

divides (p5m, where gm(x) gm(x, A). Since m ^ n it follows that m n

(i.e. p X n) and f(x) gn{x, A) + y f°r some y, as required.
For even values of q we modify the above to take account of the theory

of the quadratic in characteristic 2. In particular, the splitting field of Qx

is Kt t= Fq(x, 9J, where

+ b2x +
K1 + C)2*2 + b\

>1 + ©1 „ ,2..2 ,2 81 ' SaY '

and, similarly, that of Q\ is K\ Fq(x, 0^), where

0,2 Û, CCC2 + M + Ci) s,Ö1 + Ü1 ~7Z c. 2 7 9 Ö1

Since K\ K then, by (3.3), + Ax~2 r2(x) + r(x) for some r(x) in
Fq(x). This alone can be checked to imply, in turn, that b2 0 and then
b1 0. Further comparison of and A/x2 yields ÇXÇ2 1 and

ci Ki +C,[1)2A. As in the other subcase, this data suffices to complete
the proof when q is even.

(ii) a 2, q odd. We show that in this case / is essentially a sub-linearised
polynomial. Our first claim is that it suffices to prove that

f(x) S(x+ ß) + y

for some (p, 2)-polynomial S over Fq and ß, y in F?. For assuming this to
be the case, we have
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f(x) - y (x + ß) {(x + ß)(pk~1)/2 + ^(x + ß)^1"1^2 + ...}2,

where 0 < i < k and at(^0) g Fg. Expanding, we obtain

f(x) — Y + 2aiXipk+pl)/2 + bxipk~pl)/2 +

where

g
+a2k_it if

(2a^pl, otherwise,

and the index in x of any term not shown is strictly smaller. Since

/(x) g Fg(x) it follows, in every case, that at e Fq and hence that ßpI and ß

are in Fq. Our claim is therefore justified and we can proceed to work
in Fq.

Take (3.2) in the alternative form

6(x, y) (y-x)2 - 2h(j/ + x) + c, b{^0), c g Fq

Indeed, replacing /(x) by /(x + ß), where ß (b2 — c)/4b, we may suppose
that c b2. The splitting field of Q (and therefore every factor of (p/)

over F/x) is thus Fq(y/x). Let

Qifay) (y-£>ix)(y-£,2x) + -
where ^ and C,2 are rath roots of unity, be any (quadratic) factor of (p/.

For Qx to have splitting field Fq(y/x) too it is necessary that C)1 Ç2 Ç,

say. Provided Ç + 1 it follows that y — C,x appears with an even power in
the factorization of yn — xn, contradicting the fact that n is odd. Thus
Ç 1, m 1 and n pk, a power of the characteristic. We may therefore

write

Qi(x, f) iy-x)2 - 2(b1y + b2x) F,.
The splitting field of Q1 is Fq(x, s/(2(bi+b2)x + bl — cl). Hence # —

and b\ c1. Similarly, the splitting field of the paired factor ßi(y, x) is

Fg(x,]/(2(bi + b2)x + bl-Ci) which implies that bx b2 (since bx + - b2).

Accordingly, with N \(n— 1) and some relabelling of subscripts,

<p j{x,y)n {{y-xf - 2bi(y+x) + >

i — 1

where h,- eF,,i 1,N. Setting B, ^/h;, i 1,IV, we obtain

<P/(*2,J;2) (y2-x2) n {y-x-Bi)(y-x + B
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In other words, f(x2) is a factorable polynomial of degree 2pk. The only

possibility permitted by [1], Theorem 1.1 is that f(x2) L2(x) + y for a

linearised polynomial L and y eFç. This is equivalent to the stated result

and hence the proof is complete.

4. Substitution polynomials with a cubic factor

In analogy to the previous section, let f(x) be an indecomposable

polynomial of degree n in F^[x] for which cpf(x, y) is divisible by an

irreducible cubic polynomial ß(x, y) in Fg[x, y]. Unfortunately, however,

Lemma 3.1 does not generally extend and, consequently, the crucial Lemma 3.2

cannot be applied. On the other hand, the study of primitive groups
whose point stabilisers possess an orbit of length 3, initiated by Sims [10]
and completed by Wong [14], becomes available, with the extra proviso
that / must be supposed to indecomposable over the algebraic closure Fq

(i.e., Gal (/(y) — z/Fq(z)) is primitive). This is probably a negligible assumption
— I do not know of any polynomial that is indecomposable over Fq yet
decomposable over Fq — but it is required for application of [14] to be

made.

Let G and G be the Galois groups of /(y) — z over Fq(z) and Fq(z),

respectively. Wong [14] distinguishes nine possible classes (labelled (l)-(9))
for the primitive group G. We shall summarise some implications for the
factorization of cp/ and the existence of EPs but are largely silent on
whether a particular permutation group can ever be realised as G or G.

A handy summary of the group-theoretic background is [4] which cites much
relevant literature such as [3], [6], [9].

Fundamental to the concept of a primitive permutation group is its
socle which is the subgroup H generated by all its minimal normal
subgroups. For us, necessarily H ç G ç G. At a basic level, socles are
distinguished according to whether they are abelian or non-abelian.

Groups with abelian socle (affine groups) have prime power degree and H
is an elementary abelian p-group. Here, in our situation, by [5], p is

truly the field characteristic unless / is a cyclic or Dickson polynomial
which is ruled out by §2. Of the nine classes in [14], just (1) and (2)
have abelian socle and then G is an extension of the cyclic group Zp by
Z3 °r of Zp x Zp by Z3 or S3. Now for p 1 (mod 3) there are (p, 3)-
polynomials of degree p or p2 (indecomposable simply over Fq) with such a
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Galois group and similarly if p — 1 (mod 3), this happens for appropriate
(p2, 3)-polynomials of degree p2. It is quite likely that these are the only
occurrences of this phenomenon but I have not carried out the details

(which would presumably involve extensions of the arguments used in § 3).

More generally, we wonder whether there are any indecomposable
polynomials whose Galois groups have abelian socle that are not C-polynomials
(or at least not semi-factorable).

For the remaining possibilities (3)-(9), G has non-abelian socle. We
consider them briefly in turn.

In classes (3) and (4), n 10 and G A5 or S5 with Gx Z3 or S3.

Here cpy is either the product of three absolutely irreducible factors or,
over F9, has one absolutely irreducible cubic factor and one factor of
degree 6 which may split into two cubic factors over Fq.

For (5), n 28 and G PGL{2, 7). Here G G unless G is allowed to
be imprimitive in which case G PSL(2, 7). (This latter situation would,
of course, be particularly interesting were it to be realised because /
would be decomposable over F^). Nevertheless, in every case cpy has an

absolutely irreducible cubic factor.
Corresponding to (6) are the possibilities n 55 or 91 with Z4 ç Gx

Ç Gx ç S4 and

PSL(2, k) s G <= G ç= PGL{2, k), k 11 or 13

respectively. To illustrate, if n 55, G PGL(2, 11) and G PSL(2, 11),

then (py has four absolutely irreducible factors of degree 12 and a sextic
factor over Fq which splits into two cubics over Fq. When n 91 there are

always seven absolutely irreducible factors of degree 12.

For (7), q p ± 1 (mod 16), n p(p2 -1)/48, G G PSL(2, q)

while Gx G4. Certainly, all the factors of (pf are absolutely irreducible.

Finally, for (8) and (9), n 234 and

SL(3, 3) g G ç G ç Aut 5L(3, 3)

with

54 Ç Gx ç Gx ç ^ x Z2

Here the outer automorphism group of ST(3, 3) has order 2 and the cubic

factor of (py is absolutely irreducible.
One important conclusion to emerge from the above is that, if f(x) e F^[x]

is an indecomposable polynomial over Fq whose substitution polynomial has
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a cubic factor over Fg and whose Galois group has non-abelian socle,

then / is not an EP. This prompts a last question. Is there an EP

indecomposable over whose Galois group has non-abelian socle?
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