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EXCEPTIONAL POLYNOMIALS
AND THE REDUCIBILITY OF SUBSTITUTION POLYNOMIALS

by Stephen D. COHEN

1. INTRODUCTION

Let F, be the finite field of prime power order g = p". Given a rational
function f = f,/f,, where fi(x) and f,(x) are co-prime polynomials in F,[x],
define the substitution polynomials ¢y, ¢f in two variables x, y by
Qr0x, ) = [2(01(0) = 10 /2(p) and @F (x, ¥) = @s(x, ¥)/(y —x). Usually,
in fact, f will simply be a polynomial (thus f = f;) and always we assume,
without loss, that f is separable, i.e., f(x)&¢F,(x?). If f = g(h) is func-
tionally decomposable over F,, then ¢, is divisible by ¢,, but reducibility of
substitution polynomials not attributable to this phenomenon is apparently
rare. Nevertheless, the concept of an exceptional polynomial (EP) calls for
such reducibility, at least over l_Tq, the algebraic closure of F,. Specifically,
a polynomial f(x) in F,[x] of degree n > 1 is called exceptional over F,
if none of the irreducible factors of @7 (x, y) over F, is absolutely irreducible,
i.e., remains irreducible over F .- The importance of EPs derives from their
connection with permutation polynomials (PPs) of F,. Briefly (see [8],
Chap. 7, §4), every EP over F, is a PP and, conversely, for sufficiently
large g (as a function of n) every PP is an EP. Moreover, infinite classes
of EPs are the most prominent in the list of known families of PPs
compiled by Lidl and Mullen [7].

We distinguish below four families of polynomials over F, whose substi-
tution polynomials represent the chief examples of reducibility. These
comprise the well-known classes of cyclic polynomials (C,), Dickson poly-
nomials (C,) and linearised polynomials (C,) together with a further (unnamed)

4

class C, introduced in [1]. We denote their union () C; by C and call
i=1

the members of C C-polynomials. C-polynomials are the source of all known
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EPs with the understanding that those which are EPs can be combined by
composition with each other and with linear polynomials to yield further
EPs. Prompted by this last observation, we note that, because a compo-
sition f = g(h) of polynomials over F,  is an EP if and only if both ¢
and h are, [2], it suffices to classify EPs which are polynomially inde-
composable. In group-theoretical terms, the restriction to indecomposable
polynomials has the great advantage that Gal(f(y)—z/F,(z)), the Galois
group of f(y) — z over F (z), where z is an indeterminate, is primitive as
a permutation group on its roots, [2].

For C-polynomials, the reducibility of their substitution polynomials
is of a fairly simple nature dominated by the existence (over F ;) of linear
factors after the fashion we now indicate. As used in [1], a rational
function (usually a polynomial) f over F, is called factorable if ¢s(x, y)
splits completely into factors in F ,[x,y] which are linear (automatically
in both x and y). C,-polynomials and C5-polynomials are obviously factorable.
C,-polynomials and C,-polynomials are not, since for these, @F is the
product over K, of irreducible polynomials of the same degree d(>1),
where d = 2 if f is a Dickson polynomial. Nevertheless, they are “semi-
factorable”, a term to which we give the following definition. A rational
function (here, always a polynomial) f is called semi-factorable if there
is a rational function r(x) in F (x) such that the composition f(r) is
factorable over F,. As illustrated by the Dickson polynomials, rational
functions r may genuinely be required even when f is a polynomial.
Slanting the above facts another way, we observe that for an indecomposable
C-polynomial f, Gal(f (y)—z/F (z)) has abelian socle and so is an affine
linear group (see [4]).

It was shown in [1] that, for any f(x) in F [x], the product of the
linear factors in ¢ (its ‘‘factorable part’’) is wholly accounted for by the
existence of polynomials g(x), A(x) in F,(x) with A factorable and ¢, = ¢,
such that f = g(h); explicitly, h = L% where L is a linearised (or linear)
polynomial and d > 1. The main work of the present paper is an analysis
(aided by group theory) of indecomposable polynomials whose substitution
polynomials possess an irreducible quadratic factor over F ;- We shall
conclude that these all lie in C, u C,; thus, in particular, no new EPs
arise in this way. The general treatment of substitution polynomials with
factors of higher degree appears to be very difficult. Here, as we illustrate
for polynomials with cubic factors, group theory seems to allow some
exciting possibilities for reducibility but whether these can ever be realised
for polynomials f is another question (which is not treated here). Almost
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certainly, as we shall see, an indecomposable EP f for which ¢, has a
cubic factor lies in C, but whether this extends is unclear. More generally,
in connection with EPs two questions naturally arise.

(1) Are all indecomposable EPs over F, semi-factorable ?
(i) Are all indecomposable semi-factorable EPs C-polynomials?

I would tentatively suggest that the answer to (i) might be “yes” but
hesitate to speculate on the answer to (i).

2. THE SEMI-FACTORABLE FAMILIES

The classes C;, C, and C; are described briefly (see [8], for example).
More detail is given for C,.

Cy. Cyclic polynomials. These have the form c,(x) = x", where p } n.
Obviously ¢, is factorable and is an EP (or PP) if and only if gc.d.
(n, g—1) = 1. Trivially, of course, ¢, is indecomposable over F , i and only
if n is a prime (#p).

C,. Dickson polynomials. For any n(>1) with p tn and any a(%0)
in F,, a typical member g,(x, a) has the shape

) = 5 " (”Ti>(—ayxn-2f.

As in [13], over Fq we have
[n/2]

(2.1) Pg, (%, ¥) = (v—x) [] O —oxy+x2+pa),
i=1

where o; = (' + (7 B, = ' — {7, ¢ being a primitive nth root of unity in
F,. Since each of the quadratic factors in (2.1) is irreducible, g, 1s not factorable.
Yet it is semi-factorable. Set R(x) = g,(r(x), a), where r(x) = x + ax~ .
Then, by equation (7.8) of [8],

R(X) = Tan(ca(x)) = x" + (a/x)"

and hence

Pr(X, y) = H(y C'x) (xy— C‘)
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Thus R is factorable and g, semi-factorable.
From (2.1) we can easily deduce the familiar facts that g, is an EP
or PP if and only if (n, g>—1) = 1 while the identity

G, m(X, @) = Gul(gmlx, a), a™)

((7.10) of [8]) yields the conclusion that g,(x, a) is indecomposable over F,
if and only if n is a prime (#p).

C5. Linearised polynomials. These have degree n = p*(k>1), a typical
specimen having the form

(2.2) L(x) = i a;x? |
i=0

where ag, ..., ar € F, with apa, # 0. Because ¢,(x, ) = L(y — x), evidently L
is factorable and is an EP (or PP) if and only if L has no non-zero
roots in F,. Suppose that L is given by (2.1) but that, for some
s 2 1,a; = 0 unless s|i. Then, for any ae F,; and any Bqu, we have

(2.3) L{ox+B) = al(x) + B,

and we refer to L as a p’-polynomial (cf. [&], § 3.4).

C,. Sub-linearised polynomials. These polynomials (for whom a better
title is requested) had their genesis in [1]. We construct a sub-linearised
polynomial S(x) of degree n = p(k>1) as follows. Let L in C; be a
p*-polynomial of degree p* and d(>1) be an integer such that (p})d|p® — 1.
Then L(x) = xM(x? for some M(x) € F,[x] and we set S(x) = xM?%x). Thus

S(x%) = L),
or, equivalently,
(2.4) S(ca) = ciL) .

The polynomial S as defined above will also be referred to as a (p®, d)-
polynomial. We note that, by (2.4) and Theorem 1.1 of [1], S(c,) 1s factorable
and hence S is semi-factorable.

We remarked in [1] that a (p%, d)-polynomial S(x) = xM%x) for which M
has no roots in F, is an EP provided (d, p*”?—1) = 1. In fact, the last
condition is unnecessary and we state the definitive result as follows.

TueoREM 2.1. Let S(x) = xM%x) be a (p%, d)-polynomial in F[x],
where d|p° — 1. Then
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(i) the irreducible factors of ¢©§ over F, all have degree d ;

(i) S is an EP over F, if and only if M has no roots in F,.

q

Proof. (i) Since d|p* — 1, then {, a primitive dth root of unity, lies
in F,., and the non-zero roots of L(x) (=xM(x%) can be arranged in the
form {¢%y,,j=0,.,d—1,h=1,.., N}, where N = degM = p* — 1/d and
{y& h=1,.., N} is the set of roots of M. By (2.3) and (24), we have

Ps(x?, y9) = @ra(x, y)
d—1

= ] (L»)—CLx)

i=0

:ﬁuww

s;,g.
>—AO

”:.— O:j|

ﬁ fj (y— sz CJYh)
NI

(2.5) = (y*—x9) Cy—Cx—74).

Now, for any v in Fq, it is clear that the polynomial

d—1 d—1 . ‘
1:[0 EO Gy —8x—7v)

lies in F,[x% %] and therefore may be written P,(x% y%), where P.(x, )
e F [x, y] has degree d (in both x and y). We claim that P, is irreducible.
For suppose P.(x,y) has a non-constant factor Q(x,y) in F,[x, y]. Then
O(x?, y9y must be divisible by (ix — {/y —+y for some i and j with
0<ij<d-— 1 0Ky, however, is invariant under x — (*x, y — (’y for
any u, v. It follows easily that Q(x, y%) is divisible by P(x?, %) and we deduce
that Q = P,, as required. Consequently, by (2.5),

X y) n PYh(x y

is the prime decomposition of ¢ & over l_Tq and (1) is proved.
(i) Continuing with the same notation, we have

d—1

Px4yY) = (=D T] (v*—=(—C%)%

i=0

= (DY —d(y (=0 D)



58 S. D. COHEN

It follows that, if y“ is a root of M and P,(x, y) lies in F,[x, y], then
both y** and y**~" are members of F,, whence y' € F ;- This means that S
is an EP unless M has a root y* in F,. The converse is clear and the
result follows.

3. SUBSTITUTION POLYNOMIALS WITH A QUADRATIC FACTOR

Throughout, let f(x) be an indecomposable polynomial in F,[x] for
which @/(x, y) is divisible by an irreducible quadratic factor Q(x, y) in
I_?q [x, y]. Denote by Q* the factor of ¢, irreducible over F, itself, that is
divisible by Q.

Lemma 3.1.  Gal Q*(x, y)/F (x) has order deg Q* and so is regular as a
permutation group on the roots of Q*(x,y) over F,[(x) (see [12], p. 8).

Proof. Let F,a be the field generated over F, by the coefficients of
— d

Q (in F,). Then Q* = [[ Q;, where Q,, .., Q, are the distinct conjugates
=1

of Q obtained by applying the d F -automorphisms of F . to the coefficients
of Q. Thus deg Q* = 2d. But, evidently, the splitting field of Q* over F (x)
can be constructed by adjoining the splitting field of Q to F,a. Its Galois
group therefore has order 2d as required.

With Lemma 3.1 as a spur, we formulate some group theory in terms of
polynomials (see [2]). For an indecomposable polynomial g(x) in F,[x],
G = Gal(g(y)—z/F q(z)) is primitive. Moreover, the orbits of a point stabiliser
G, of G correspond to the irreducible factors of ¢, over F_; in particular,
when P(x, y) is such a factor of ¢, so also i1s P(y, x) and the associated
orbits are “paired” (see [12], § 16). The following result is therefore a

(slightly weakened) version of [12], Theorem 18.6.

LEMMA 3.2. With g and P as above, suppose that both Gal P(x, y)/F (x)
and Gal P(y, x)/F (x) are regular. Then Gal @ (x, y)/F (x) = Gal P(x, y)/F (x).

COROLLARY 3.3. With f and d asin Lemma 3.1, @f isa product
over K, of irreducible polynomials of degree 2d, each of which is a product
of irreducible quadratics over F,. Furthermore, all these quadratics have a
common splitting field over l_Tq(x).
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Proof. Lemmas 3.1 and 3.2 yield
Gal os(x, ¥)/F,(x) = Gal Q*(x, y)/F,(x) ;

in particular the splitting field of ¢, is a quadratic extension of Fg(x).
Since the latter of necessity is also a splitting field of any irreducible
factor Q;, of ¢, over l_?‘q, we deduce that degQ; < 2. But ¢, has trivial
factorable part (by [1]) and therefore Q, itself must be a quadratic whose
coeflicients, by another application of Lemma 3.2, also generate F .. All
the assertions now follow.

Next, we reformulate for polynomials a theorem about “self-paired”
orbits ([12], Theorem 16.5) in which the group concerned need not be
primitive.

LEMMA 3.4. Let g(x) be a (not necessarily indecomposable) polynomial
in F,[x] such that Gal (g(y)—z/Fq(z)) has even order. Then ¢% has an
irreducible factor P over ¥, such that P(y,x) = cP(x,y), where
c(#0)eF,.

We are now ready for the climax.

THEOREM 3.5. Let f(x) be an indecomposable polynomial in F,[x]
such that @, is divisible by an irreducible quadratic over F,. Then
S(x) = af*(x+B) + v, where af+#0), B,vyeF, andeither f* isa Dickson
polynomial of odd prime degree (#p) or p is odd and f* is a
(p, 2)-polynomial in C,.

Proof. We can assume that f is monic of odd degree, the latter by
Corollary 3.3. The same result implies that Gal(f (y)—2z/F(z)) has even
order. Thus, we may select for Q the “‘symmetric’’ irreducible factor of OF
over Fo (or F,) predicted by Lemma 3.4. Actually, Q is quadratic (by
Corollary 3.3 again) and we may suppose it is monic in ¥.

The symmetry of Q means that either

(3.1) 00x,y) = y* — x> +aly—x) + b, a,b qu,
or
(3.2) Ox,y) = y*> —axy + x> — b(y+x) + ¢, ab,ce F,.

We suppose Q is given by (3.1) and quickly dispose of this possibility.
As Q is absolutely irreducible g cannot be even. Further, since the
homogeneous quadratic part of Q divides y" — X", the homogeneous part



60 S. D. COHEN

of ¢, of highest degree (a fact we will continue to use), we deduce that
y? — x* divides y" — x". When g is odd, however, this implies that n is
even, a contradiction.

We may therefore suppose that @ is given by (3.2) (with a # 0 if g i1s
even). Let m be the largest divisor of n prime to p. From the homogeneous
parts of highest degree, we must have a = { + (™!, where { is an mth root
of unity in F ;.- Because n is odd it follows, in particular, that a # 0,
even if g is odd. We distinguish two cases which lead ultimately to the

alternative conclusions of the theorem.

(i) a # 2. We show in this case that f is essentially a Dickson poly-
nomial. The argument is facilitated by a technical lemma of Turnwald [11]
which allows us to work only in Fq. Specifically, taking o« = o' =y =1
and noting that this implies ¥ = 1 in Lemma 3.1 of [11], we see that
it suffices to prove that p v n (ie., m=n) and f(x) = g, (x+B, 4) + vy, where
A(#0), pand ye F,.

Begin by setting B = b/(a—2) and replacing f(x) by f(x+B). This means
that we can assume that b = 0 in (3.2) and also ¢ # 0 (otherwise Q 1is
reducible). Now define A(#0) by ¢ = (a?—4)A4 = ((—{ 1)?A. Recall from
Corollary 3.3 that ¢/(x, y) and every (quadratic) factor of ¢@.(x, y) have
a common splitting field K over Fq(x). Regarding K as the splitting field
of 0, we have K = f*’q(x, 0), where

0 = Jx>—4), if qisodd,
(3.3) 02 + 0 = A/x*, if giseven.

(For g even this uses the ideas of [8], p. 379 and the fact that F, is
algebraically closed.)

Next let Q;(x, ) be any irreducible (quadratic) factor of @(x, y). For
some mth roots of unity {, and {, and b,,b,,c; In Fq, we can write

0:(x,3) = y* — (G +C)xy + §i0ox* — byy — byx + ¢y,

which is “paired” with the monic factor Q'(x, y) = nQ,(y, x), where
n = ((;{;)" ' Thus

Q1(x,y) = y* — € +C7)xy + nx® — by — nbyx + ney .

For the moment suppose ¢ is odd. The discriminant of Q; (as a poly-
nomial in y) is

(C1_C2)2x2 + 2@1(@1 +§2)—|—2b2)x + b? — 4y
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while that of Q) 1s
n"‘{(Cl—Cz)zxz + 2(b2(C1 +C2)+2b1C1C2)x + b3 — 40,8y}

By (3.3) these both must be a non-zero constant multiple of x? — A. We
deduce that

(3.4) ; # Cas

(3.5) by(C;+C,) + 2by, = by(C+C,) + 20,8, = 0
and

(3.6) b? — 4c, = b2 — 4,0, = ¢ # 0.

From (3.5) b2 = {,{,b? and hence {,{, = 1 by (3.6); thus b3 = bi. If
b, # 0, then (3.5) implies that {; = {, = + 1, contradicting (3.4). We
conclude that b, = b, = 0,{, = {77! and ¢ = A, —(;")?* Since Q; was
an arbitrary factor of ¢, it is clear from the expansion (2.1) that @y
divides @, , where g,(x) = g,(x, A). Since m < n it follows that m = n
(ie. p ¥ n)and f(x) = g,(x, A) + v for some v, as required. '

For even values of ¢ we modify the above to take account of the theory
of the quadratic in characteristic 2. In particular, the splitting field of Q,
is Ky = Fq(x, 0,), where

§1C2x2 + byx + ¢4

02 + 0, = = 3,, say,
N S L
and, similarly, that of Q) is K, = F 4(x, 01), where
9’12 4o = ClCZ(x2+b1x+Cl) — 5

(C1+C2)2x2 + b%

Since K7 = K then, by (3.3), 81 + Ax™? = r’(x) + 1(x) for some r(x) in
F,(x). This alone can be checked to imply, in turn, that b, = 0 and then
b, = 0. Further comparison of 8;,8; and A/x* yields {,{, = 1 and

¢, = ((+C7 Y%A, As in the other subcase, this data suffices to complete
the proof when g is even.

(i) a = 2, qodd. We show that in this case f is essentially a sub-linearised
polynomial. Our first claim is that it suffices to prove that

J(x) = S(x+B) + v

for some (p, 2)-polynomial S over Fq and B,y in Fq. For assuming this to
be the case, we have
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f) — v = (x+PB) {x+PF V2 + q(x+ B2 + 32,
where 0 < i < k and g,(#0) € Fq. Expanding, we obtain
fx) =y = X7 + 2qxP TP 4 SxtPVZ 4

where

S = 2a, B> +ay_,, if p=3,i=k-1,
~ |2a,8*", otherwise,

and the index in x of any term not shown is strictly smaller. Since
f(x) e F (x) it follows, in every case, that a;€ F, and hence that B” and P
are in F,. Our claim is therefore justified and we can proceed to work
in F "
Take (3.2) in the alternative form
Ox, y) = (y—x)?* = 2b(y+x) + ¢, b(#0),ceF,.

Indeed, replacing f(x) by f(x+p), where B = (b*—c)/4b, we may suppose
that ¢ = 2. The splitting field of Q (and therefore every factor of ;)
over F(x) is thus F(,/x). Let

0:(x,y) = (y—C1x) (y—0x) + ...,

where (; and {, are mth roots of unity, be any (quadratic) factor of @;.
For Q, to have splitting field Fq(\/x) too it is necessary that {; = {, = (,
say. Provided C # 1 it follows that y — {x appears with an even power in
the factorization of y" — x", contradicting the fact that n is odd. Thus
{ =1,m =1 and n = p* a power of the characteristicc. We may therefore
write

Qi(x,y) = (y_x)2 — 2(b1y+byx) + ¢, by,by,cy EFq'

The splitting field of Q; is F,(x, /(2(b;+by)x+b3—c,). Hence b, # — b,
and b? = c¢,. Similarly, the splitting field of the paired factor Q,(y, x) is
F,(x, ]/(2(b1+b2)x+ b2 —c;) which implies that b, = b, (since b; # — b,).
Accordingly, with N = 3(n—1) and some relabelling of subscripts,
N
(Df(x, y) = H {(y_x)Z - 2bl(y+x) + b?} >

i=1

where biqu,i = 1,.., N. Setting B, = \/b,-,i = 1,.., N, we obtain

N
0r(x*, ¥ = (y*—x?) 1_—[ (y—x—B;)(y—x+B;) y+x—B;) (y+x+B;) .
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In other words, f(x2) is a factorable polynomial of degree 2p*. The only
possibility permitted by [1], Theorem 1.1 is that f(x*) = L*(x) + vy for a
linearised polynomial L and 7y e F .- This is equivalent to the stated result
and hence the proof is complete.

4. SUBSTITUTION POLYNOMIALS WITH A CUBIC FACTOR

In analogy to the previous section, let f(x) be an indecomposable
polynomial of degree n in F,[x] for which ¢(x, y) is divisible by an
irreducible cubic polynomial Q(x, y) in F %, y]. Unfortunately, however,
Lemma 3.1 does not generally extend and, consequently, the crucial Lemma 3.2
cannot be applied. On the other hand, the study of primitive groups
whose point stabilisers possess an orbit of length 3, initiated by Sims [10]
and completed by Wong [14], becomes available, with the extra proviso
that f must be supposed to indecomposable over the algebraic closure F .
(ie., Gal(f (y)—z/Fq(z)) is primitive). This is probably a negligible assumption
— 1 do not know of any polynomial that is indecomposable over F, yet
decomposable over Fq — but it is required for application of [14] to be
made.

Let G and G be the Galois groups of f(y) — z over F, (z) and F A2)s
respectively. Wong [14] distinguishes nine possible classes (labelled (1)-(9))
for the primitive group G. We shall summarise some implications for the
factorization of ¢, and the existence of EPs but are largely silent on
whether a particular permutation group can ever be realised as G or G.
A handy summary of the group-theoretic background is [4] which cites much
relevant literature such as [3], [6], [9].

Fundamental to the concept of a primitive permutation group is its
socle which 1s the subgroup H generated by all its minimal normal sub-
groups. For us, necessarily H < G = G. At a basic level, socles are
distinguished according to whether they are abelian or non-abelian.

Groups with abelian socle (affine groups) have prime power degree and H
is an elementary abelian p-group. Here, in our situation, by [5], p is
truly the field characteristic unless f is a cyclic or Dickson polynomial
which is ruled out by §2. Of the nine classes in [14], just (1) and (2)
have abelian socle and then G is an extension of the cyclic group Z, by
Zy or of Z, x Z, by Z; or S;. Now for p = 1 (mod 3) there are (p, 3)-
polynomials of degree p or p? (indecomposable simply over F,) with such a
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Galois group and similarly if p = — 1 (mod 3), this happens for appropriate
(p?, 3)-polynomials of degree p2 It is quite likely that these are the only
occurrences of this phenomenon but I have not carried out the details
(which would presumably involve extensions of the arguments used in § 3).
More generally, we wonder whether there are any indecomposable poly-
nomials whose Galois groups have abelian socle that are not C-polynomials
(or at least not semi-factorable).

For the remaining possibilities (3)-(9), G has non-abelian "socle. We
consider them briefly in turn.

In classes (3) and (4), » = 10 and G = A5 or Ss; with G, = Z; or S;.
Here ¢, is either the product of three absolutely irreducible factors or,
over F,, has one absolutely irreducible cubic factor and one factor of
degree 6 which may split into two cubic factors over F .-

For (5), n = 28 and G = PGL(2, 7). Here G = G unless G is allowed to
be imprimitive in which case G = PSL(2, 7). (This latter situation would,
of course, be particularly interesting were it to be realised because f
would be decomposable over Fq). Nevertheless, in every case ¢, has an
absolutely irreducible cubic factor.

Corresponding to (6) are the possibilities n = 55 or 91 with 4, < G,
€ G, < S, and

PSL(2, k)= G = G < PGL(2, k), k = 11or 13,

respectively. To illustrate, if n = 55, G = PGL(2,11) and G = PSL(2, 11),
then ¢, has four absolutely irreducible factors of degree 12 and a sextic
factor over F, which splits into two cubics over F .- When n = 91 there are
always seven absolutely irreducible factors of degree 12.
For (7), g = p= + 1 (mod 16), n = p(p*—1)/48, G = G = PSL(2, q)
while G, = S;. Certainly, all the factors of ¢, are absolutely irreducible.
Finally, for (8) and (9), n = 234 and

SL(3,3) = G = G = Aut SL(3, 3)
with
S, G, G, =8, x Z,

Here the outer automorphism group of SL(3, 3) has order 2 and the cubic
factor of ¢, is absolutely irreducible.

One important conclusion to emerge from the above is that, if f(x) e F, [x]
is an indecomposable polynomial over F , Whose substitution polynomial has
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a cubic factor over Fq and whose Galois group has nomn-abelian socle,
then f is not an EP. This prompts a last question. Is there an EP
indecomposable over F, whose Galois group has non-abelian socle?
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