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MORDELL CONJECTURE 419

(1)  (hm1) YD) N Cn(S) is infinite,

(iv)  There exists a finite covering S, , of S such that the fiber product
of hmn. with S, , is Galois, Abelian and of positive degree.

Let J denote the Jacobian scheme of C over S. Let a: C — J be an Albanese
morphism. Let p be a prime. Let T denote the closure of a(T) in J(S) ® Z,.
Since a(T) is infinite it follow from the Mordell-Weil Theorem that there exists
ateT— a(T). Let t, € T such that r — a(t,) € p"J(S). Let C, denote the
normalization of the fiber-product of C and J via the map H,:x = p"x + 1,
and 4, ; the natural map from C, to C. It follows that C, is defined over S
and since H,,(J(S)) 2 {t,:m | n} that A, (C,(S)) contains an infinite subset
of T.

All that remains is to exhibit the maps #4,, ,. Clearly, ¢, — ¢, = p"ry, , for
some r, , € J(S). Let H, , denote the map x:p™~"x +r, ,. Then H,
= H, °H, ,. It follows that H,, , pulls back to a morphism #4,, ,: C,, = C,.
It is easy to see that this morphism becomes Abelian after adjoining the
p’”~"-torsion points on J. This proves the proposition. [

Remark. One can also prove the above proposition with the condition
n < m replaced by n | m.

3. COROLLARIES OF THE THEOREM OF THE KERNEL

LEMMA 3.3.1. Suppose g:X' — X is a morphism of smooth proper
schemes with geometrically connected fibers over S. Then if n e PF(X'/S)
and s,t e X(S),(g*n) (s, 1) = n(gos, got).

Proof. This follows easily from Lemma 1.3.2. [J

Suppose J is the Jacobian of C over S and g is an Albanese morphism,
then since g*:Hpp(J/S) > Hpp(C/S) is an isomorphism g*:PF(J/S)
— PF(C/S) is an isomorphism.

LEMMA 3.3.2. Let u be a fixed Picard-Fuchs differential equation on

C/S. Then {u(s,t):s,t e C(S)} lies in a finite dimensional subspace of
K[S] over K.

Proof. Suppose L € PF(J/S) such that g*[ = . The lemma follows
from the Mordell-Weil theorem which together with the Theorem of the kernel
implies that J(S) modulo the kernel of the homomorphism s — [i(e, s) is a
finitely generated Abelian group. [
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LEMMA 3.3.3. Suppose A is an Abelian scheme over S such that
(W45l = H})R(A/S) and g:C — A is a non-constant morphism over S.
Fix seC(S). Then the set T ={teC(S):(g*u)(s,t)=0 for all
w e PF(A/S)} is of bounded height.

Proof. Let A’ denote the smallest Abelian subscheme of A over S
containing g(C). Since the map g*:PF(A/S) = PF(A'/S) is surjective and
[(Wa4ss] = H})R(A/S), it follows from Proposition 2.1.2 that g(7) is contained
in a translation of the group of constant sections of A'/S. Hence, g(7) is a
set of bounded heigt. Finally, since C — g(C) is a finite morphism, it follows
that 7 is a set of bounded height. [

In particular,

COROLLARY 3.3.4. Suppose A is an Abelian scheme over S such that
Kass IS an isomorphism and g:C — A is a non-constant morphism over
S. Fix seC(S). Then the set {te C(S):(g*uy,)(s,t) =0 for all
W € Wy,s} Iis of bounded height.

4. PROOF OF MORDELL’S CONJECTURE

PROPOSITION 3.4.1. Suppose the kernel of the «xc,s has rank at
least 2 over KIS], then the points of C(S) have bounded height.

Proof. Suppose C(S) contains points of arbitrarily large height. Fix
s € C(S). By shrinking S, if necessary, we may suppose that there exists a func-
tion z € K[S] such that Qg = K[S]dz and there exists a finite covering % of
C by affine opens U and functions vy € Z(U) such that s € U(S), and
Q‘C(U) is spanned by dz and dvy. We may also suppose that s*v, = 0 by
replacing vy with vy — (so f)*vy if necessary. For Ue £ ,u € Z-(U) we
define 0y .u and 9y ,u by the equation |

du = 9y ,udz + Oy, ,udvy .
Then 9y . is a lifting of 0 = :0/0z. We set u(¢) = u(s, ¢) for
uw e PF =:PF(C/S)

and ¢t e C(S).
Let ®; and ®, be two independent elements in the kernel of x.,5. It
follows that there exist ®; and ®, € w¢, s such that

Olo;] = [w;] .
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