

Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de l'Enseignement Mathématique
Band: 36 (1990)
Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: MANIN'S PROOF OF THE MORDELL CONJECTURE OVER FUNCTION FIELDS
Autor: Coleman, Robert F.
Kapitel: 1. Sets of bounded height
DOI: <https://doi.org/10.5169/seals-57915>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 16.01.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

III. MORDELL'S CONJECTURE

Suppose L is a field of characteristic zero of finite type over a relatively algebraically closed subfield K .

THEOREM 3.1 (Manin). *Suppose C is a curve of genus at least 2 defined over K . Suppose $C(L)$ is infinite, then there exists a curve C_0 defined over K such that $C_0 \times_K L \cong C$ and $C(K)$ minus the image of $C_0(K)$ under this isomorphism is finite.*

We can translate this into

THEOREM 3.1 (BIS). *Suppose S is a variety defined over K and suppose $C \rightarrow S$ is a smooth proper curve of genus at least 2 over S . Suppose $C(S)$ is infinite, then there exists a curve C_0 defined over K such that $C_0 \times_K S \cong C$ and $C(S)$ minus the image of $C_0(K)$ under this isomorphism is finite.*

Remarks. First, it is possible to reduce this by standard arguments to the case in which S is a smooth affine curve over K and so we will suppose this to be the case. Second, if we can prove that $C_0 \times_K X \cong C$ for some C_0 defined over K , (i.e. that C is a constant family) then this is de Franchis' theorem which is proven in Lang's Fundamentals of Diophantine Geometry. Hence to prove this theorem all we have to do is show that if $C(S)$ is infinite then C is a constant family of curves.

1. SETS OF BOUNDED HEIGHT

In this section we will either recall or derive the properties of heights needed in the sequel.

Let $f: X \rightarrow S$ be a smooth projective morphism of varieties over K a field of characteristic zero. Corresponding to a projective embedding of X over S , there exists a function $h: X(S) \rightarrow \mathbf{R}$ called a logarithmic height. (For a reference, see ([L-FD] Chapter 3, §3). If the logarithmic height of a subset of $X(S)$ is bounded with respect to one projective embedding, it is bounded with respect to all (See [L] Prop. 1.7, Chapt. 4). We will call such a set a set of bounded height and a set of points which is not of bounded height, a set of unbounded height. We will need several properties of such sets. If $g: X' \rightarrow X$ is a morphism of projective schemes over S which is finite onto its image, then the inverse image of a set of bounded height in $X(S)$ is a set of bounded height

in $X'(S)$. Suppose X is an Abelian scheme over S and R is the subgroup of $X(S)$ consisting of constant sections of X/S . Let $s \in X(S)$. Then the set $s + R$ is a set of bounded height.

LEMMA 3.1.1 (Manin). *Suppose E is a finite dimensional K vector subspace of $K(C)$. Then the set*

$$T = \{s \in C(S) : \exists k \neq 0 \in E \text{ such that } s^*k = 0\}$$

has bounded height.

Proof. Without loss of generality we may increase E to suppose that the rational map $g: C \rightarrow \mathbf{P}_K(E)$ given on points by $x \mapsto (e \in E \mapsto e(x))$ is birational onto its image (note: g is actually a morphism on the compliment of the polar locus of E). It follows that g induces an embedding of the generic fiber of C/S into $\mathbf{P}_{K(S)}(E \otimes K(S))$. Let h denote the logarithmic height with respect to this embedding. It follows that if $s \in C(S)$, $g \circ s$ is constant or $g \circ s$ has degree one. In the former case $h(s)$ is zero and the degree of the Zariski closure of $g \circ s(S)$ in $\mathbf{P}(E)$ in the latter.

Now if $s \in T$, and $g \circ s$ is not constant, it follows that the Zariski closure of $g \circ s(S)$ is a component of a hyperplane section of the Zariski closure of $g(C)$. Hence, $h(s)$ is less than or equal to the degree of the Zariski closure of $g(C)$. This proves the lemma. \square

The key property about heights we will need is:

THEOREM 3.1.2. *Suppose $C \rightarrow S$ is as in the above theorem. If $C(S)$ contains an infinite set of bounded height then C is a constant family.*

(See Corollary 2.2, Chapter 8 of [L-FD].)

Hence all we need prove is that the elements of $C(S)$ have bounded height.

2. LANG-SIEGEL TOWERS

Suppose the genus of C is at least 1. Suppose T is an infinite subset of $C(S)$.

PROPOSITION 3.2.1. *There exists a projective system of curves*

$(\{C_n\}, \{h_{m,n}\}), m, n \in \mathbf{Z}_{>0}$ and $n \leq m$, over K such that

- (i) $C_1 = C$,
- (ii) $h_{m,n}: C_m \rightarrow C_n$ is étale,