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provide a brief survey of the literature on some allied problems. Though
extensive, our bibliography is far from complete. We refer the reader to the

bibliographies in [9], [12] and [35].

2. Spectral analysis of radial functions

We denote by <o(R"), the space of C00 functions on R" with the usual

topology and by <f'(R"), the dual space of distributions of compact support
with the strong topology — both Fréchet-Montel and hence reflexive spaces.
Ccco(R") is the space of C00-functions of compact support. For a space of
functions or distributions we denote the usual action of an element a of
the orthogonal group 0(n, R) by the notation / /CT. #"rad will stand for
the space of those / g 3F which are invariant under 0(n, R), i.e., fa f
for all a g 0(n, R). $"(R")rad *s a closed subspace of S"(R") and the spaces
<f(R")rad and S"(Rn)rad are (strong) duals of each other. In the case n 1,

even functions are the analogues of radial functions and we write ^e to mean

^rad- Though our considerations in this section hold for all n ^ 2, we
shall restrict ourselves to the case n 2 to keep the exposition simple.

We start with a slightly weaker version of the classical theorem of
L. Schwartz ([23]).

Theorem 2.1 (L. Schwartz's theorem on spectral analysis). Let % be a

nontrivial closed subspace of S{R\ which is closed under translations, then

°U contains an exponential function ellx for some X g C.

As pointed out in [1] an immediate corollary of the theorem is: If %

is a nontrivial closed subspace of <?(R)e which is closed under convolution
against all T e S'(R)e, then °U contains a function of the form vj/^x)

(eax + e~ax)/2.

We now introduce a family of functions on R2 which is central to
spectral analysis of radial functions. For X g C, define

e-iUx-w)dw,xe~R2
M i

where the integral is with respect to the normalised Lebesgue measure on
the unit circle. Here x. w is the usual inner product. It is immediate that

is a radial function for each XeC. For / g Cc°°(R2)rad, we define a

transform (sometimes called the Bessel transform) :
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W) <\>x(x)f(x)dx Xe C

We see that if / is the Fourier-Laplace transform of / g Cc°°(R2), i.e.,

/Or, *2) - e i{z • X)f(x)dx z (z-l z2) g C2
R2

then we have

(2.1) 9m f(X,0),X e C / e Cc<°(R2)rad •

Both the transforms 9 defined above and the Fourier-Laplace transform
have their obvious extension to <f'(R2)rad. We have for T e <f(R2)rad,

9T(X)T(ct>0

T(z1z2) T(ez), z e C2

where ez(x) e-^ix1+z2x2) _ e~^ \ye again have

&T(X) - T(X, 0), XeC.

By applying the Paley-Wiener theorem we are able to obtain a description
of the function space SX {&T: T e Cc°°(R2)rad}.

Lemma 2.2. S£ is the space of even entire functions f on C such that

for some constants, c, N and A (depending on f
|/(X)|< C(l + \X\)NeA^p XeC.

Proof. By the Paley-Wiener theorem an entire function § T for some
T e #,(R2)rad if and only if for some C, N, A > 0,

I c(>(z) I ^ C(1 + \z\)NeA\lmz\

and

c|)(z) <|)(az)

for all z (Zl, z2) g C2 and a g SO(2, R) (here Im z (Im Zl, Im z2). The
latter condition is equivalent to saying 4>(z) 4>(z') whenever z2 + z2

z'f2 + z22. To see this, consider, for each a g C,

Ma {z: z\ + z
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If a ^ 0, Ma is a connected analytic submanifold of C2 of complex dimension 1

and 50(2, R) (a, 0,0) is a real submanifold of Ma of dimension 1 on
which the analytic function c|> is given to be constant. This forces 4> to be

a constant on Ma. A modification of the argument is necessary for a 0.

The lemma now follows from the simple observation that if X2 z 2 + z f,
then (Im X)2 < (Im zx)2 + (Im z2)2 and from the relation 2.1.

A straight-forward application of the one-dimensional Paley-Wiener
theorem for even distributions of compact support will show that is also

equal to

{T:Te S"(R)e}

This identification allows us to define the linear map X by

X:<r(R2)rad-><r(R2)e

(ZT)AW « XgC.

X is one-to-one and onto. Moreover, we have the following description of
the strong topology in ê '(R") (see [12], prop. 2.1): Tn -> T if and only if
(i) Tn -> T uniformly on compact sets along with the derivatives and

(ii) Tn, n > 1 satisfy the uniform Paley-Wiener condition :

I f„(z) I « C(l + |z|)VIImz|s zeC".

for some C, N, A > 0. This description coupled with the observation in
the last step of the proof of Lemma 2.2 gives that X is a topological linear

isomorphism between S"(Jl2)rad and $"(R). preserving convolution.
On using the reflexivity of <f(R)e and ^(R2)rad we now get the maP

X:AR2)rad-AR)e,

<E(T),2(/)> < T, f > Ter(R2)rad,/eAR2)rad

where < > is the pairing of dual spaces.

We now have the following useful lemma :

Lemma 2.3. With the notation above, we have

X(D * X(/) - X(T*/)

/or aH T e S"(R2)rad and f e S(R2)rad, where * denotes the usual

convolution on R2.

Proof. Let S e ^r(R2)rad. Consider

<Z(S), (Z(7>£(/))>
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E(S) * (E(T)*E(/))v(0)
(where gw(x) g( — x), g e <?(R2), x e R2),

E(S)*((E/)v*E(T)v)(0)

E(S) * (E(/)*E(T)) as E(T), £(/) are even

E(S) * (s(r)*£/)) (0)

<z(5*ns/>
(using ES * ST ES * T)

<S*T, / >
S * T * /(0) as/ is even

<S, T*/ >

On the other hand,

<S(S),S(T*/)> - <S, T*/>
The lemma is proved.

Finally, we come to the main result of the section: the spectral analysis

theorem for radial functions. As we remarked in the introduction, the

development in this section is along the same lines as in [1] where the

corresponding result for rank-1 non-compact symmetric spaces is proved.

Theorem 2.4. Let y be a closed nonzero subspace of <f(R2)rad such

that for all T e i'(R2)T2Ld and f e y, T * / e y. Then there exists X g C

such that 4>x e y.
Proof Consider the closed and nontrivial subspace M of ê{R)e such that

L(y) — M. By Lemma 2.3, M is closed under convolution with elements

SG(f'(R)e. By the remarks following Theorem 2.1 now, there exists XeC
such that the functions T/ g M, where T/(x) (eÎXx + e~iXx)/2, x g R. A simple
calculation now shows

< (|k ,/> <¥„£/ > £ Cf (R2)rad <f(R2)rad •

Thus Ecj)^ =« T/ and hence 4>x g y.

3. Pompeiu problem for the M(2) action on R2

The Euclidean motion group M(2) is the semidirect product of R2 with
the rotation group SO(2, R).
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