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70 S. C. BAGCHI AND A. SITARAM

provide a brief survey of the literature on some allied problems. Though
extensive, our bibliography is far from complete. We refer the reader to the
bibliographies in [9], [12] and [35].

2. SPECTRAL ANALYSIS OF RADIAL FUNCTIONS

We denote by &(R"), the space of C® functions on R” with the usual
topology and by &'(R"), the dual space of distributions of compact support
with the strong topology — both Fréchet-Montel and hence reflexive spaces.
CX(R") 1s the space of C*-functions of compact support. For a space of
functions or distributions %, we denote the usual action of an element o of
the orthogonal group O(n, R) by the notation f — f°. %, will stand for
the space of those f € # which are invariant under O(n, R), i.e, f° = f
for all o€ O(n, R). &'(R"),,q 1s a closed subspace of & (R") and the spaces
é(R"),,q and &'(R"),,4 are (strong) duals of each other. In the case n = 1,
even functions are the analogues of radial functions and we write &, to mean
& ..a- Though our considerations in this section hold for all n > 2, we
shall restrict ourselves to the case n = 2 to keep the exposition simple.

We start with a slightly weaker version of the classical theorem of
L. Schwartz ([23]).

THEOREM 2.1 (L. Schwartz’s theorem on spectral analysis). Let % be a
nontrivial closed subspace of &(R), which is closed under translations, then

hx - for some A e C.

d contains an exponential function e

As pointed out in [1] an immediate corollary of the theorem is: If %
is a nontrivial closed subspace of &(R), which is closed under convolution
against all T € &'(R),, then % contains a function of the form V,(x)
— (ei)»x_}_e—i?\x)/z-

We now introduce a family of functions on R? which is central to
spectral analysis of radial functions. For A € C, define

Pu(x) = J e M- Mdyw x e R?
[wj=1

where the integral is with respect to the normalised Lebesgue measure on
the unit circle. Here x.w is the usual inner product. It is immediate that
¢, is a radial function for each AeC. For fe CPR?,,q, we define a
transform (sometimes called the Bessel transform):
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G0 =J o) f()dx, reC.

We see that if f is the Fourier-Laplace transform of f e CQ(R?), ie,

A~

f(z1,25) = J e I f(x)dx, z = (z1,25)€ Sl
" RZ

then we have

2.1) G = fA0), heC, feCPRY) .

Both the transforms % defined above and the Fourier-Laplace transform
have their obvious extension to &'(R?),,s. We have for T € &'(R?),.q,

GTN) = T(d), reC
T(z,,2,) = Tle.), zeC?
where e (x) = e {Frx1t22x2) — =iz %) We again have

4T = T, 0), reC.

By applying the Paley-Wiener theorem we are able to obtain a description
of the function space & = {¥4T: T € CP(R?),.4}-

LemMMA 2.2. & is the space of even entire functions f on C such that
for some constants, ¢, N and A (depending on f),

| fO) | < CA+[A)Net™M  HeC.

Proof. By the Paley-Wiener theorem an entire function ¢ = T for some
T € &'(R?),,4 if and only if for some C, N, 4 > 0,

| 0(z) | < C(1+|z|)Vem=l
and
d(z) = d(oz)

for all z = (z;,2,) € C* and o€ SO(2, R) (here Im z = (Im z,, Im z,). The
latter condition is equivalent to saying &(z) = ¢(z') whenever z2 + z2
= z}* + z4*. To see this, consider, for each o € C,
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If o # 0, M, is a connected analytic submanifold of C? of complex dimension 1
and SO(2,R) (o, 0,...,0) is a real submanifold of M, of dimension 1 on
which the analytic function ¢ is given to be constant. This forces ¢ to be
a constant on M,. A modification of the argument is necessary for o = 0.

The lemma now follows from the simple observation thatif A> = z1 + z3,
then (Im A)* < (Im z,)* + (Im z,)? and from the relation 2.1.

A straight-forward application of the one-dimensional Paley-Wiener
theorem for even distributions of compact support will show that Z is also
equal to

{TA”: T € &'(R),} .
This identification allows us to define the linear map X by
2 'R, — &R,
D"\ =9TA), reC.

> is one-to-one and onto. Moreover, we have the following description of
the strong_ topology in & "(R?) (see [12], prop. 2.1): T, — T if and only if
(1) T ST uniformly on compact sets along with the derivatives and
(1) T,,, n > 1 satisfy the uniform Paley-Wiener condition:

| T,(2) | < C(L+lz)Vetlm=l, zeCm.

for some C, N, A > 0. This description coupled with the observation in
the last step of the proof of Lemma 2.2 gives that X is a topological linear
isomorphism between &'(R?),,, and &’(R), preserving convolution.

On using the reflexivity of &R), and &(R?),,, we now get the map 5.

2: E(R?),0q — 6R),,
<XT),2(f)> = <T, f> TeER)g, f€ERY)g

where < -,- > is the pairing of dual spaces.
We now have the following useful lemma:

LEMMA 2.3. With the notation above, we have
X(T) * 2(f) = X(T*f)

for all Te&RY,.q and feER?).,q, where = denotes the usual
convolution on R?.

Proof. Let S € &'(R?),,4. Consider
<3(S), (X(T)*Z(f))>
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= 3(8) * (Z(T)=Z(f)) ¥ (0)
(where gV (x) = g(—x), g € ER?), x € R?),

= 2(8) * () *2(T)") (0)
= X(S) * (E(f)*=(T)) as X(T), Z(f) are even
= X(S) * (Z(T)*Z.[) (0)
= <Z(SxT),Xf>
(using ZS * 2T = ZS* T)
= <8T, [ >
= ST = f(0) asf is even
= <§, Txf>.

On the other hand,
<3(S), XUT*f)> = <S8, T*f> .

The lemma is proved.

Finally, we come to the main result of the section: the spectral analysis
theorem for radial functions. As we remarked in the introduction, the
development in this section is along the same lines as in [1] where the
corresponding result for rank-1 non-compact symmetric spaces is proved.

THEOREM 2.4. Let ¥ be a closed nonzero subspace of &(R?)..q4 such
that for all Te&'(R?),,y and fe¥,T* fe¥. Then there exists heC
such that ¢, € 7.

Proof. Consider the closed and nontrivial subspace M of &(R), such that
(7)) = M. By Lemma 2.3, M is closed under convolution with elements
S e &'(R),. By the remarks following Theorem 2.1 now, there exists A e C
such that the functions ¥, € M, where ¥,(x) = (e**+e~™)/2, x € R. A simple
calculation now shows

<, > = <¥,Zf> feClR),4 <= ER?
Thus £¢, = Y, and hence ¢, € 7.

rad -

3. POMPEIU PROBLEM FOR THE M(2) ACTION ON R?

The Euclidean motion group M(2) is the semidirect product of R? with
the rotation group SO(2, R).
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