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HADAMARD-CARTAN THEOREM 311

A geodesic will always be a locally distance-realizing curve parametrized
proportionally to arclength by [0, 1]. A geodesic space is locally convex if every
point has a neighborhood such that the distance d(a(t), B(#)) is convex for any
two minimizing geodesics o and B in the neighborhood. (Of course, for
Riemannian manifolds without boundary this is equivalent to nonpositive
sectional curvature; see [BGS].) If m,, denotes the midpoint of a geodesic
from p to g, then it is equivalent to say that M is covered by neighborhoods
U such that the relation

2d(my,, my) < d(q,r)

holds for any three points p, ¢ and r in U and any geodesics in U joining them
(such geodesics are unique).

We are very grateful to the referee for examining the paper carefully and
suggesting a number of technical improvements.

We also thank the referee for informing us of the chapter [Ba] by
W. Ballmann that is to appear in Sur les Groupes Hyperboliques d’apres
Gromov (Ghys, de la Harpe, eds.), and its author for promptly sending us a
preprint. In [Ba], the Hadamard-Cartan theorem is proved using the Birkhoff
curve-shortening technique; this depends on local compactness, which we
avoid by exploiting local convexity. Another distinction is that the notions of
exponential map and conjugate point are not introduced in [Ba]. The
Hadamard-Cartan theorem is applied in [Ba] to obtain a criterion for the
hyperbolicity of certain simply connected polyhedra.

2. CONJUGATE POINTS

In a given geodesic space, let G, be the space of geodesics starting at m,
carrying the uniform metric d. Say the point m has no conjugate points if the
endpoint map on G,, maps some neighborhood of every y homeomorphically
onto a neighborhood of the endpoint of y. (In Riemannian manifolds without
boundary, this definition is equivalent to the usual one.)

THEOREM 2. A locally convex, complete geodesic space has no
conjugate points.

Here it is straightforward that the endpoint map is a homeomorphism, and
in fact an isometry, from some open neighborhood of every y onto its image.
The question is whether it is surjective; that is, whether locally there always
exist geodesics from s that vary continuously with their righthand endpoints.
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To show this, especially in the absence of local compactness, seems to require
a little care.

Proof. Fix a geodesic y. The maximum radius of an open ball, such that
the distance function is convex between minimizing geodesics with endpoints
in the ball, is positive and varies continuously with the center of the ball. Thus
the infimum, r, of these radii over all the points of vy is positive. Suppose o,
and a, are geodesics whose distances from vy, namely

d((l,', Y) = maXd(ai(t)a Y(t)) ’

are less than r. Since convexity is a local property, the distance function
d(o,(2), a,(t)) is convex, and hence the larger of its two endpoint values is
d(al,azﬁ).

Let P(L) be the statement:

For every subsegment vy of y of length at most L, any two points p and
g whose respective distances from the endpoints of y are less than r/2 are
joined by a geodesic a = a(p,q) whose distance from vy is less than r/2.

Note that a(p, g) is necessarily unique, and the distance function between any
two such geodesics is convex.

Clearly P(r) holds. We claim that P(3L/2) holds if P(L) does. Indeed, sup-
pose p and g are the left and right endpoints of a subsegment of y of length
at most 3L/2, and let p, and g, trisect its length, moving from left to right.
Suppose p and g lie within distance R < r/2 of the endpoints p and gq,
respectively. Applying P(L) to a(p, qy) and a(py, q) repeatedly, we define p;
and g¢; inductively for i = 1 by letting p; be the midpoint of a(p, g.;) and g;
be the midpoint of a(p.;, q). Convexity ensures that d(p..;,p;) and d(q., q;)
do not exceed R/2/ and hence do not exceed r/2+!. Therefore the sequences
{p;} and {gq;} are Cauchy, converging respectively to points p, and ¢
within distance R of p, and g,. Since the distance function between a(p, g;)
and o(p, ¢«) is convex, {o(p, q;)} converges uniformly to a( D, 4s). Similarly,
{a(p;,q)} converges to a(p«,q). Each of these limit geodesics contains a
reparametrization of o.(pe,J«), SO they combine to give the desired geodesic
joining p and gq.

We conclude, in particular, that the endpoint map sends the ball of radius
r/2 about a geodesic y in G,, isometrically onto the ball of the same radius
about the endpoint of y. [

Now we indicate how the above argument on conjugate points fits into the
Alexandrov theory of spaces of curvature bounded above. Following [ABN],
we shall say that a geodesic space has curvature bounded above by K if every
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point has a ‘““model neighborhood”’ in which any two points are joined by a
minimizing geodesic in the neighborhood, and any minimizing geodesi_c
triangle in the neighborhood has perimeter less than 2n/)/K
(if K > 0), and angle sum at most equal to the sum for a triangle having the
same sidelengths in the standard surface Sy of constant curvature K.
Alexandrov proved that then each angle individually is at most equal to its
comparison angle in Sk [A1]. Here the angle at a vertex of a given minimizing
geodesic triangle is defined to be the lim sup of the corresponding comparison
angles in Sk over all triangles obtained by approaching the vertex along its
adjacent sides. Curvature bounded above by 0 is a stronger condition in general
than local convexity [Al]; for instance, most Minkowski spaces satisfy the
latter and not the former.

The Alexandrov development method then shows that minimizing
geodesics in a model neighborhood are unique and vary continuously with their
endpoints ([A2], p. 51-56). The main step in this method is the proof that if
one forms a triangle in a model neighborhood by moving distances x and y
along two minimizing geodesics from m, then the angle in the model triangle
in Sk at the point corresponding to m is nondecreasing in x and y. It follows
from this by a hinge argument that the distance between any two points of
a triangle in a model neighborhood is no greater than the distance in Sk
between the two corresponding points of the model triangle. Alexandrov
further proves that in any region in which minimizing geodesics are unique and
vary continuously with their endpoints, the angle comparison property for
minimizing geodesic triangles holds globally as well as locally ([A2], p. 56-58).
Alexandrov’s development method may also be applied to an arbitrary, not
necessarily minimizing, geodesic y in G, (of length less than mn/}/K
if K> 0), and any two geodesics o; and o, sufficiently close in G,, to y. We
outline the argument.

We may assume that o, and o, lie within distance r/2 of vy, where r is a
uniform model radius for vy, and that all geodesic triangles
A(t) = mo,(t)o,(f) consisting of subsegments of ¢, and 6, and the minimiz-
ing geodesic between their righthand endpoints have perimeters less than
2n/)/'K. For all ¢ in some interval [0, ], the sidelengths of A(f) satisfy the
triangle inequalities, A(?) and its model triangle in Sk satisfy the angle com-
parison property, and the angle 8(¢) at the point corresponding to m in the
model triangle is nondecreasing in #. We claim that these properties extend to
min{f, + €, 1}, for uniform &, whenever they extend to #, < 1; and hence they
extend to 7y = 1. To see this, choose € so that the restrictions of c; and o, to
[%, fo + €] lie in a model neighborhood of y(z,) and are minimizing. Construct
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a pentagon in Sy in the obvious way out of three model triangles cor-
responding to A(ty), Ac,(f) o, (u)o,(fy) and Ac,(ty)o,(u)o, (1) respectively.
By the angle comparison property, the interior angles of this pentagon at the
points corresponding to 6,(%) and 6,(%) are at least m. Thus this pentagon
determines a surface with boundary in Sx whose boundary is itself a
minimizing geodesic triangle in the interior metric. Therefore the triangle
inequalities hold for A(u). By straightening the two concave sides of the pen-
tagon one increases the three convex angles and hence obtains a model triangle
for A(u) that satisfies the angle comparison property. The same argument
applied to A(u) and A(v) for f, <u <v <1, + ¢ shows that 6(x) < 8(v), and
hence verifies the above claim. It follows by a hinge argument that A(1)
satisfies the following uniform distance comparison property: for 0 <t < 1,
the distance between o,(¢) and o6,(¢) is no greater than the distance in Sk
between the corresponding points of the model triangle for A(1). In particular,
the endpoint map on G,, is injective on a neighborhood of 7.

One may then ask whether the endpoint map is surjective, sending a
neighborhood of y onto a neighborhood of its endpoint. To answer this
question fully, we indicate how to extend the proof of Theorem 2 to the case
K> 0:

THEOREM 3. A complete geodesic space of curvature bounded above by
K >0 has no conjugate points along geodesics of length less than m/)/K.

It is easy to give examples showing that local injectivity of the endpoint
map may not imply local surjectivity beyond length n/|/K. (However, in
Riemannian manifolds without boundary, local injectivity of the exponential
map implies regularity and hence local surjectivity [W].) For instance, a closed
unit hemisphere in its interior metric has curvature bounded above by 1; here
the nature of G,, changes abruptly at length m. If vy lies on the boundary
circle and has length m + ¢, then a small neighborhood of y is mapped
homeomorphically onto a circular segment, not onto a neighborhood of the
endpoint.

Proof. Fix a geodesic y of length less than n/]/K. Let r > 0 be a uniform
radius for model balls around points of y. Let P(L) be the statement:

Given ¢ in (0, r), there is & > 0 such that for every subsegment y of y of
length at most L, any two points p and g whosg respective distances from
the endpoints of y are less than & are joined by a geodesic a = a(p, q)
whose distance from v is less than € and whose length is at most L + .
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If p = min{r/2,n/4)/K}, then P(p) holds, by taking & = min{e/2, p/2}.
This estimate uses the the fact that the distances between corresponding points
of two sides of a triangle in Sk never exceed the endpoint value if both sides
have length less than n/2)/K. It remains to be shown that if P(L) holds
and L < 2n/3)/K, then P(3L/2) holds.

Choose & < min{r/2, n/61/]_<}. This choice of & ensures that any two
geodesics issuing from the same point and having length at most L + € and
distance at most € from a subsegment of vy will satisfy the uniform distance
comparison property. In particular, the geodesics a(p, g) in P(L) are unique.
Now choose €’ < min{2n/3] K — L, 2¢/3}. Denote by &8’ the value given by
applying P(L) to vy, with " as the desired distance from subsegments of y. Set
L'=L+¢ and A =sin(/KL'/2)/sin(}'KL") (then 1/2<A<1). It is an
exercise in spherical trigonometry to show that if B, and P, are two sides of
a minimizing triangle in Sx and both have length less than L’, then

(1) d(B:(1/2), B2(1/2)) < Ad(Bi(1), B2(1)) .

Let 8 = (1 —A)8"/A (then also & < &").

Suppose that y is a subsegment of y of length L < 3L/2, with endpoints
p and g, and let p and g be points within distance 8 of these endpoints. We
now follow the construction of Theorem 2. Subdivide y into thirds by points
Do, qo and take, recursively, p; as the midpoint of a(p, ¢;_,) and ¢; as the
midpoint of a(p;,_,,q). To verify that this recursive definition is possible,
apply P(L) repeatedly to the subsegments a(p, qo) and o(py,q) of vy, and
note that inductively d(p;,_,,p;) and d(q;_,,q;) are less than A‘S by the
uniform distance comparison property and (1), and hence d(p,,p;) and
d(qo,q;) are less than A8/(1 —AX) = §'. In particular, {p;} and {g;} are
Cauchy, and converge to p. and ¢. respectively. By the uniform distance
comparison property, {a(p,q;)} converges uniformly to a(p,gd-) and
{o(pi,q)} to a(pe,q). These two limit geodesics overlap since 0(Pew, o) i8S
unique, hence combine to give a geodesic from p to ¢ that has distance at most
¢’ <& from y and length at most L + 3¢’/2< L +¢. []

3. PROOF OF THEOREM 1

Again consider a locally convex, complete geodesic space M, and let G,,
be the space of geodesics starting at m carrying the uniform metric d. It follows
from local convexity that a Cauchy sequence in G,, converges to a geodesic
and hence d is complete. Furthermore, M has neighborhoods of bipoint uni-
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