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424 R. F. COLEMAN

Lemma 3.1.1, using the fact that height is stable under the action of G, the
subset 7 of T consisting of elements ¢ for which there exists a ¢ € G and an
I,0 < i< n, such that f;, # 0 is of bounded height.

Let T, = T — T;. Clearly, T, is stable under G. Moreover, f;, = 0 for all
t € T,. That is,

o', 0) = X zi b (7, h(2))
In particular, p,,(r’,2°) = p, (r’,¢) for f € T, and 6 € G. On the other hand,

o (P 1%) = Wy, (7, 77°) + By, (770, ) = P (75 77°) + a0 (s 1)
by (II, 1.1) and Lemma 3.3.1. It follows that

uw—wc(rla t) = Hm(r',’”'c)

for all w € wp,5,0 € Gal(X/Y) and t e T,. Let t, e T,. By (11, 1.1) we
conclude that P, _oe(f,2) = 0 for all ® € wp,5, 0 € Gal(X/Y) and ¢ € T5.
But {® — ®0°:® € wp/s, 6 € Gal(X/Y)} spans wg,s over K by the definition
of B. Corollary 3.3.4, applied to the morphism X — B, implies 75 is a set of
bounded height. But this implies that X(S) is a set of points of bounded height.
This contradiction completes the proof of Mordell’s conjecture for function
fields. [

APPENDIX: CHAI’S PROOF OF THE THEOREM OF THE KERNEL

In this appendix, we give Chai’s proof of Manin’s Theorem of the Kernel,
Theorem 2.1.0 above and explain how Manin used it to prove the function
field Mordell conjecture. Let notation be as in Section II. As explained in that
Section, the theorem follows from the assertion:

(A1) N(e,s) =0 iff woN(es) =0.

Let H = H.,(4/S). For a subconnection D of H, let D denote the
pullback of H,,(A/S, Z) to D. As (Al) is stable under fiber products and
isogenies (see Proposition 1.3.2), (Al) is a consequence of the following
theorem, taking D = [W].

PROPOSITION Al.l. (Chai). Suppose A/S is irreducible and not
isotrivial. Let D be a non-trivial subconnection of H. Then the
extension H of H of connections splits iff the extension D of D does.
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Proof. The only if direction is clear.

For the other direction, we may, without loss of generality, suppose K = C.
Fix ¢ € S(C). For an integrable connection D on S. Let D, denote the fiber
of D at ¢ and G(D) denote the Zariski closure of the image of the monodromy
group at ¢ of D in Endc(D,). .

Let N(D) denote the kernel of the natural map from G(D) to G(D). The
group G(D) acts naturally by conjugation on N(D). Moreover, since I:] 1s an
extension of H by C, (recall (e, s) determines a basis) on which G(H) acts
trivially and we have a natural G(D)-equivariant pairing ( , ):N(D) x D - C
given by (n, d) = n(d) — d. Hence we have a commutative diagram

N(H) = H*
(A2) ! !
N(D) = D*

where the right arrow is the natural surjection.

Now suppose that the extension Dof D splits. Then N(D) = 0 since G(D)
acts trivially on C. By the Poincaré lemma the map of G(H) modules
H, — H, is defined over Q. It follows from [D-H; Corollaire 4.4.15] that A3
is an irreducible representation. Hence N(H) = 0 or N(H) surjects onto H .
In the latter case, it follows from (A2) that N(D) surjects onto D but this
implies D¥ = (0), a contradiction. Thus N(H) = 0. This implies G(H) acts
on the exact sequence,

0-C—-H,~»H,—~0.

As G(H) 1s semi-simple by [D-H; Corollaire 4.2.9] we see that this sequence
splits as well. This implies that the horizontal sequence

0— Fi—=H—H-0

splits by [D-SR; Proposition 1.3, Theorem 2.23 and Theorem 5.9]. [
By replacing Proposition 2.1.2 by Theorem 2.1.0 in the proof of
Lemma 3.3.3 one obtains:

COROLLARY Al.2. The conclusions of Proposition 2.1.2 and Lemma 3.3.3
are true without the assumption that [W, ] = H}JR(A/S).

Now we give Manin’s proof of Proposition 3.4.1 using Theorem 2.1.0. This

was the only place in [M], where this theorem was needed. This proof does
not use Siegel’s Theorem.
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Let notation be as in Section 3.4. Siegel’s theorem was not used until the
last paragraph of the proof of Proposition 3.4.1. Therefore we may
assume C’ is affine, W(S) contains a set 7’ of unbounded height and we
have a derivation 8 on W such that 7*dx = d(t*x) for all x € K[W].

It follows from Lemma 2.2.3 that for each p € PF, there exists an
x, € K[S] such that

n(t) = t*x,.

Lemma 3.3.2 implies that {u(f) —x,:2 € 7"’} is contained in a finite
dimensional K-linear subspace of K(C). Hence, by Lemma 3.1.1, u(¢) = x,
for all u € PF and all ¢ in the complement 7’ of a finite subset of 7. (We
use here that PF is finitely generated over Z5.) Fix #, € T°”’. Then
w(,?) =0 for all t e T” and all p € PF. This contradicts the above
corollary and thus proves Proposition 3.4.1.
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