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136 R. SCHRAUWEN

interesting observation is, that in general the monomials of ¢ themselves will
have a smaller order in 7 than ¢.

6.7. THE CASE THAT f IS ARBITRARY.

If f=f"" - f"g with f; irreducible, m; > 2 and g reduced, we still
have that f + €@ has the diagram of f with the multiple arrows replaced. We
know exactly which replacements are possible (see section 3.8). To find out
what is the type of f + €0, it again suffices to investigate linking behaviour.
Some possibilities that only become apparent when f; and f + e are drawn
in one diagram (that is the diagram of their product), have to be opted out
by considering linking with cables which are known to be correct, using such
valuations as v®@.

Although the tests become increasingly difficult, this gives a way to
generalize theorem 6.5.

6.8. IOMDIN TYPE SERIES.

We end with a remark on series of the form f + &/*, where / is a linear
form not tangent to any branch of f and k& > k,, the largest polar ratio of
f. These series have been studied by Iomdin and L&, see [L€], not only in the
curve case but for general dimensions. Siersma [Si] has given a formula for
the A, of these series. In the curve case this is just a special case of our results.
Notice that:

vi(l) =dik where di=¢e(X)=2%"1,
vP () = 2dik .

We would like to stress again that these Iomdin type series are generally much
coarser than our topological series: they are single indexed and for example
the Milnor number increases with steps of d = d;, + -+ - + d, within the
series.

APPENDIX

In this appendix the EN-diagrams of the series of plane curve singularities
listed in [AGV] are drawn.

The first part consists of the exceptional families E, W and Z.

The second part contains the infinite series A, D, J, W, W#, X, Y and
Z. All variants are given. In the tables, we have that:
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(a) p = the Milnor number;
(b) N, and the graph constant ¢ are as in theorem 3.4;

(c) A% isthe Ay of the non-isolated singularity, the A, of an element of the

series can be obtained by multiplying with >-< — (= 1)V,
Name | Formula 7 EN-diagram
3k+1
Esp y3 + g3kl 6k Ts
2k+1
Eerp1 | y° + 22ty 6k + 1 iz
3k+2
Feryo | y3 + z8k+2 6k + 2 i:i
4k+1
Wiar | y* + ztkH1 12k ' T4 '
3k+1
Wioksr | y* + ya3kt+? 12k + 1 ia
3k+2
Wiskys | y* + ya36+2 12k + 5 is
4k+3
Wiskye | y* + yz3kt3 12k + 6 i4
3 3k+4
Zekv11 | T(Y° + yz2Ft3 4 23%44) | 6k 4 11 Is
3 2%k4+3 | .3k ._A;T__,% 3
Zek+12 | z(y° + yz + 235+3) | 6k + 12 2
3 2k+4 3k 3k+5
Zek+13 | o(y® + yo2ktd 4 g3545) | 6k 4 13 Ts >
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Name | Formula I EN-diagram
1
Y 0 (2) AS =57
AO Yy 0 b b > 2> N = P+ 1>
Ay y2+w2 1 — No=1,¢c=0
N
AP y2 + xp+1 P l2
Dy zy? 1 -—(2) A® =1
2 3 Y2 2 '5> N = D—- 2’
Dy |zy*+a 4 | No=2,c=1
N
D, | a+ar ’ g
k 3k _
Jeso | 4% +2ky? 3k—2 ) T " A=t =1
' 3 -1
k > 2 >1l,¢c= ]C
3 k 3k _ k Z 4p2 i,
Jk0 v+zfy+z 6k—2 ——%—‘ N = p+2k, No = 2k
k N
Jk,p y3 o= xky2 4 r3k+p Gk——?-{-p I I2
Wk y4 + y2$2k+1 8k+1 ’_251:72—' (2) AOO — t8k+4 = ]
100 -1
k>1,p>1
W, 4 2..2k+1 4k+2 2k+1 Z Lp2 4,
ko | Y Ty +z 12k+3 2 N=p+2k+1
%% 44 y242k+1 4 g4k+24p | 19K+ 34 N x No=2k+1,
k,P y y p c = 2k + 1
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Name Formula 7 EN-diagram
2k+1 4k+2
Wio | (B2 +a2+1) 4k e Ap=* m JE 1
2k+1 N
>
W’fzq_l (y® + x2k+1)2 + yadktite 12k+2¢42 °—j'—*>—T—‘>2 : ’ _é,q > 1,
2k+1 N'/2
N =8k+2¢+3
# 2 2k+1)2 2..2k+1+
Wk,?q (y + T ) + y Z q 12k+2q+3 ‘2 NI — 8k + 2q+4
Xoo y4 + z2y2 5 . o o (2) A:o — t4 _1
4, .22 .4 p210,N=p-1,
Xo yt+ iyt + 2 9 v—}-— No=9.c—2
N
X, y4 + z2y? 4 pitr-9? p ‘—T——f——'
44  h,3 4 o 2h,2 hl o _ (#*h 1)
Xh,o0 ¥+ zy + 2y 8h—3 (2) AP = 1
h2>2,p2>1,
X vt + 2Py + 2?hy? 4 23hy | 12R-3 -—"<< N =p+2h,
’ No = 2h,c=2h
Xhp yd + zhyd + 2?hy? 4 24hte | 12h—34p . h[ N
L
Yoo,00 x2y? 4 @ @ AZ® =1
742
) r,s> 1
447 2,2 * iz " 18 2 4,
lf‘r,oo Y + z°y r+45 1 = cp =2
24r 2+s
Yr R y4+r + x2y2 + $4+s 9+r+s 2 2
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Name | Formula 7’ EN-diagram
YA o 4h—2 ® Ih @ h>2,7,8>1
24T 24s
Y | See [AGV], p. 248 12h+r45-3 2 h
Zroo | TY3+ zht+2y2 3k+5 v_LT_—b A® = 3kt _ 1
k,p>l,e=k+2
Zro | zyd + aht2y? 4 o3k+4 6k+9 N=p+2k+2,
No=2k+2
k N
Zrp | zy® + 2kt2y? 4 23k+44p | 6k4+94p l 2
AR =
Z;'J,oo 8h+3k—3 l I (t4h_1)(t4h+3k_1)
-1
h2>2 kp2>1,
ZP, | See [AGV], p. 249 12h+6k— P ’
o ee [ l,p T 3 ’—T_L%‘ No = 2h + 2k,
c=2h+k
h, hik N
Z,';'p See [AGV], p. 249 12h+6k—3+p | l §2
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