Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 36 (1990)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: ON THE INVERSIVE DIFFERENTIAL GEOMETRY OF PLANE
CURVES

Autor: Cairns, G. / Sharpe, R. W.

Kapitel: 85. A GENERALIZED FOUR VERTEX THEOREM

DOI: https://doi.org/10.5169/seals-57907

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-57907
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

184 G. CAIRNS AND R. W. SHARPE

Combining this with 4.5 yields
n(x(f) — 1(n() = I, 71 (f) = () + wn(f) = Kt(f) + nt(f)

which gives 4.6 as required.

§5. A GENERALIZED FOUR VERTEX THEOREM

The curves of constant curvature in the round 2-sphere S?, the upper half
plane H? (hyperbolic space), and the Euclidean plane R? are just the circles.
Moreover, the stereographic projection p:S?—R? and the inclusion
i: H?>— R? both preserve these circles. Thus theorem 4.2 says that our form

o =] |x'(s)| ds

along a curve vy in R? pulls back via p or i to the form
o =1/k,(s)|ds

along the corresponding curve vy’, where here k,(s) and s refer to the geodesic
curvature and arc-length of v’ in the metric for S? or H2. Thus we obtain the
four vertex theorem for S? and H?2. It follows that the four vertex theorem
holds for all complete simply connected Riemannian surfaces of constant
curvature. Finally if v is a null-homotopic smooth simple closed curve on an
arbitrary complete Riemannian surface M of constant curvature, then vy lifts
one-to-one to a smooth simple closed curve with the same number of vertices
on the simply connected universal cover of M. Once again it follows that the
number of vertices is at least four.

Remark 5.1. Interestingly, simple closed homotopically non-trivial curves
in the real projective plane always have at least three vertices [17]. Note that
in non-orientable surfaces the number of honest vertices of a closed curve need
not necessarily be even, since here geodesic curvature is only defined up to a
sign.

§6. NORMAL FORM AND INVERSIVE CURVATURE

Let p be a non-vertex point of an oriented curve y. Since the subgroup of
Euclidean motions in G acts transitively on the points of R? and the unit
tangent vectors at these points, we may assume that the point p €y which
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