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MORDELL CONJECTURE 395

where the sum runs over all intersections U of i + 1 distinct elements of ©L

Let 8: Cl{^,yj) -+ C'+1(^,5^) be the Cech co-boundary. We also have

boundaries d: CG'"(^, 5^'+l).
Now let

Cn(^,V) © G^©//, :/«)

where the sum runs over p + q n. For c e Cn(ff, Sf we let cp'q denote

its p, q-th component. The hyper-coboundary

d:Cn(^,J^') -> Cn + l(f/,V)
is defined as follows: For c e we set

(dc)p'q dcp~1^ + (-1y^bcP'P-1

Then the hypercohomology of 5^with respect to if, H'{S, 3^ if), is defined

to be Ker(8)/Image(0) and H'OS, S/') is defined to be an appropriate limit
of these groups over all ordered covers. In particular, if S is a scheme, Sf
is a complex of coherent sheaves and ff is an affine open cover, then

H"(S, V) is naturally isomorphic to H (S, ff). If in addition S is affine
H \S,V)

1. Extensions of connections

Let S be smooth connected scheme over a field K of characteristic zero.
Suppose (.H, VH) and (G, VG) are integrable connections on S. The set of
isomorphism classes of integrable extensions of (H, VH) by {G, VG) forms a

group under Baer sum which we will call Ext(//, G).

Proposition 1.1.1. Ext(H,G) Hl(G(g)H, VG® V©.

Proof. Since VH is integrable, H is locally free. Let if be an ordered
affine open cover of S such that H(U) is a free (G)-module for each
U e if Suppose we have an extension

0 -> (G, VG) - (E, V) - (H, V© -> 0

of connections. Let U e if. Since H(U) is free, there exists an (G)-
module section sa:H(U) E(U). Now let hv V&Su - svo X7H. We claim
that hu is an ff (G)-module homomorphism from H(U) into Qls (x) G(G),
i.e. an element of Hom^(if, Cf® G)(G). Indeed, for / e ff(G) and
u e //(G),



:
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M/y) VM/u» - Su(VH(ft>)) V(/sv(y)) - Su(df ®v + fVHu)
— df (x) — /V(sG(i>)) — (fi?/ ®sG(y) + /?£/( V//y)) fhu(v)

Let S(jty Su - sv e Hom^(//, G)(Gn F We claim that ({hu}, {^K}) is

a hyper one-cocycle for the complex (Qj® Hom^(i/, G), V#,c). First it is

clear that {s^k} is a one-cocycle for the sheaf Horn ^> (H3G). Second

^G ° Su, V — Su, y ° V// V o (sv — Sy) — (Su ~ Sy) ° V// hv ~ hy

Finally, since

\J oXJ o Su — V°5(/0 V// + Vc h u — h u ° V# + VG ° /zG — Vh, g(^l) >

(using Lemma 1.0.1) V is integrable iff VHjG(/z) 0.

Moreover, suppose {s^} is another collection of sections

Su:H(U) -* E(U), h'v V'osj - s^o V

and 5^ y ~ s'u s'K. Then rG 5G - sö £ Horn-j?(H, G) and

h'u h + VorG—rGoV// h 4- VGorG — rGoV//=/z + V#>G(rG)

And so ({/zc/Msc/, k}) - ({^G}, {sGj j/}) is the hyper-boundary of {oy}. Thus

we get a natural map from

Ext (if, into if^Hom^ff, G), V^G) Hl(G®H, VG® V//)

It is easy to see that this map is a homomorphism.
We can make a map back as follows. Given a hyper-cocycle ({At/}»{5^K})

for the complex (Q ^ (x) Horn/v (if, G), Vh,g), let E be the sheaf determined

by the condition that E(U) - G(U)@H(U) with gluing data

(w,u) -> (W + Su,y,V)

on U n V. We then put a connection V on F by setting

V(w, u) (VGw + hu(p)-> V//f)

for local sections w and u of G and H on U. One can check easily that E is

an extension of if by G and that this construction gives the inverse to the map
above.

Corollary 1.1.2. Ext(H, j^s) is a K vector space and hence is

uniquely divisible.

Corollary 1.1.3. Suppose S is affine and S' is a non-empty affine
open of S. Then Ext (El, Jfs) injects into Ext (H® JfSr

> ~^s') •
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We note that taking duals yields an isomorphism between Ext (G, EE) and

Ext(EE, G). Also, upon identifying (G) with G, VG VG.

Lemma 1.1.4. The diagram

Ext(EE,G) - EEKG0EE, Vg®Vh)

i 1

Ext (G, EE) - Hl(H® G, VH® VG)

anti-commutes, where the horizontal arrows are the isomorphisms given by the

proposition and the right vertical arrow is the evident one.

Proof. Since the assertion is local, we may suppose EE and G are free.

Suppose (E, V) is an extension of EE by G and s:H -> E is a section. Then
h Vos - so vH is an element of Hom^> (H, G) which represents the

image of the isomorphism class of E in

EE1 (Horn (EE, G), VH>G) Hl{G®H, VG®VH)
V V

The image k of h in Hom^ (G, Qs ® EE) is determined by

k(w)(v) w{h(v)) w((V os - s-"- V//)(L))

where u is a section of EE and w is a section of G.

Now (£, V) is an extension of G by EE and the homomorphism t
determined by

t(w)(e) w(e - so%(e))

is a section, where 7t : E EE is the projection, e is a section of E and w is a
section of G. Hence, g Vot - to V£ is an element of Horn^ (G, Qls ® EE)

which represents the image of the isomorphism class of £ in

//'(Horn(Ö,£),

Now

g(w)(n) (Vo(-(o Vc)(w)(e)

where e 5(n) and

V /(H')(n) rf(w(e-j(7t(e))-w(V(e)-5(n(V(e))))

- w(VOJ(D) -A:(w)(n)
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since n (s(u)) u and nV(e) VH(n(e))- The lemma now follows from

(to VS)(w)(e) VUw)(e-s(71(e)) 0

Suppose IF is an \ submodule of H. We let [W] denote the smallest
subconnection of H containing W.

2. The Gauss-Manin connection

Here we will recall the definition and some basic properties of the Gauss-

Manin connection which we will need in this paper. For more details see [K-O].
If J^7' is a complex, will denote the complex obtained from S/' by
setting SZl{k) S/iJvk. For any scheme Y over K will let K[Y] denote

r(^V).
Suppose S is a smooth connected affine scheme over K. Suppose f:X-+S

is a smooth morphism, Z is a closed subscheme of X, smooth over S. Suppose
T is either Spec(W) or S. Then we define the subcomplex Q.X/T)Z of kl'x/T by
the exactness of the sequence.

0 —> Q>x/T,Z ^X/T ^Z/T ^ •

When T Spec(W) we drop it from the notation. It follows that
Q,lx/S z Q'x/s f°r ' > dim5Z. Note that Q°x>z Q°X/s,z *s the sheaf of ideals

of Z on X. We define HlDR(X/S, Z) to be the i-th hypercohomology group of
the complex QX/S}Z. We set HlDR(X/S) HlDR{X/S, 0). If X is affine, then

HlDR(X/S,Z) is the /-th cohomology group of the complex of ^T[*S] modules

T(QX/S>Z). If X is affine, K has characteristic zero and U is a dense open
subscheme of X then the natural map from HlDR{X/S, Z) to HlDR(U/S, Un Z)
is an injection.

From the last short exact sequence with T Sf we obtain a long exact

sequence

(2.1) - H'DR\Z/S)-H'dr(X/S, Z) - -
The Gauss-Manin connection V: H'DR(X/S, Z) -> Q5 @ H'DR{X/S, Z) is

the boundary map in the long exact sequence obtained by taking hyper-

cohomology of the short exact sequence of complexes:

(2.2) 0 — /*GS (x) klx/s z(— 1) — klx/s>z//*GS 0 Qx(-2) —* OX/E,Z ^

(which is exact because X and Z are smooth over S). It is an integrable
connection. If K has characteristic zero and / is surjective and has

geometrically connected fibers, then H°DR(X/S) iT[S] and the Gauss-Manin
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