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YANGIANS 283
4. CLASSIFICATION

To construct further examples of finite-dimensional representations of Y,
we consider tensor products of the evaluation representations W, (a). In
general, if W, and W, are two representations of Y, the action of Y on the
tensor product is given by

x. (Wi ®@wy) = Ax) (W, ® wy) ,

the action of the right-hand side being that of Y&® Y on W, ® W,. More
generally, an r-fold tensor product W, ® --- ® W, is defined using the
homomorphism A@: Y= Y ® -+ ® Y given by

r

AN = (ARIAR - QId)AU-D | AR = A,
Note that, since A is co-associative, an equivalent inductive definition is:

XW@wW,® - @w) =A0) (Wm@W® - ®w)) .

Our first main result can now be stated as follows.

THEOREM 4.1. A tensor product & Wy.(a;) is an irreducible repre-

=1
sentation of Y if and only if the strings S,.(a;) are in general position.
The proof is in several steps. We begin by analyzing the tensor product

W.(a) @ W,(b) of two evaluation representations. Recall that, as representa-
tions of [, we have

Wm(a) X Wn(b) EWnsn @ Whinos @D VV}m—nl .

We shall refer to the copy of W, ., inside W, (a) ® W,(b) as its highest
component.

The following result proves Theorem 4.1 in the case r = 2.

PROPOSITION 4.2. (a) The tensor product W, (a)® W,(b) has a
proper Y-subrepresentation not containing the highest component if and
only if

1
a—bzi(m+n)—p+1

Jor some 0 < p < min{m, n}.
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(b) The highest component generates a proper Y-subrepresentation of
W@y ® W,(b) if and only if

1
b—a=—2—(m+n)——p+1

for some 0 < p < min{m, n}.

We need two preliminary lemmas. Let Q, denote a highest weight vector
(for ¢l,) in the component W, ,,_,, of W, (a) ® W,(b).

1
LEMMA 4.3. If a—bzi(m+n)—p+1 for some 0 < p < min{m, n},

then
J(h).Q, espan{Q,} ;
J(x*).Q,=0;
J(x7).Q,espan{Q, ., x.Q,}.
Proof. The vector Q, is given by
m-D!'(n—p+1)!

p
Q = — 1) em~i®en~p+i-
p= L CD T - )t

(To verify this, it is enough to check that Q, has the correct weight and that
x*.Q, = 0. We omit the simple computation.) From (1.1) we find

AUET) =Jx)®1+1Q@J(x*) - %x+ ® h +%h®x+.

Hence,
J(x*).Q,
- f(—l)f(m—i)!("_pJ“i)!((a—3(n—2p+2i))<m—i+l)em_,-ﬂ ® en_pes
i=0 m!(n—p)! 2

1
+ (b +5(m—2i)) n—-p+i+ l)em_,-®en_p+,-+1).

The coefficient of e, ; ® €,_p+i+1 18

(—l)f(m_i)!(n—p+i)!(b+l(m—2i))(n—p+i+1)
m!(n—p)! 2
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F(=1)i+! (m_i'l)!("_p+i+1)!(a—3(n—2p+2i+2))(m—i)
m!(n—p)! 2
=(—1)"(m_iwl)!(n—p+i)!(m—i)(n—p+i+1)(b—a+l(m+n)—p+1) ,
m!(n—p)! 2

which is zero by our assumption on a — b.
The proof of the statements involving J(#) and J(x ~) is similar. We omit
the details.

Similar arguments prove the second lemma. Again, we shall omit the details.

LEMMA 4.4. For any 0 < g < min{m, n}, we have

J(h).Q,espan{Q,, x~.Q,_1};
J(x*).Q espan{Q,_};
Jx7).Qespan{Q,1,x . Q,, (x)2.Qu_1}.
Proof of Proposition 4.2.

1
(a) Suppose that @ — b = 5 (m+n) —p+ 1 for some 0 < p < min{m, n}.
We shall prove that
V= Wm+n—2p® e @ I/V|m—n|

is a Y-subrepresentation of W, (a) ® W,(b). It is enough to show that
x).QeVifp<g<min{m, n}and 0 <r<m+ n — 2q. We prove this
by induction on r. If r = 0 there is nothing to prove. For any r > 1, we have

Jh).x7).Qy = =2J(x7).(x7 )" 1.Q+x . Jh).(x") ~1.Q,;
Jxt).(x ). Qp = Jh).(x7) " LQ, + x J(xT). (x7) Qs
Jx™).(x7).Qy = (x7).J(x7).Q,.

The induction hypothesis, together with Lemmas 4.3 and 4.4, shows that the
right-hand sides of these formulas are elements of V.

For the converse, suppose that V is a proper subrepresentation of
Wn(a) ® W,(b) which does not contain the highest component. Then, for
some 0 < p < min{m, n}, we shall have Q,e ¥V but Q,¢ V if ¢ < p. Then,
J(x*).Q, =0, and by the computation in the proof of Lemma 4.3, this

1
implies thata—b=£(m+n)—p+ 1.
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(b) We shall deduce the second part of the Proposition from the first part using
duality. By Corollary 2.9, we have

(Wm(a)® Wn(b))* = Wm(—a) ® Wn(_b) o

Hence, V is a proper subrepresentation of W,,(a) ® W,(b) containing the
highest component if and only if the annihilator V° of V is a proper
subrepresentation of W, (—a) ® W,(—b) not containing the highest com-
ponent. By part (a), W,,(—a) ® W,(—b) has such a subrepresentation if

1
and only if b—azi(m+n)—p+1 for some 0 < p < min{m, n}.

Proposition 4.2 can be made more precise.

PROPOSITION 4.5. Let W = W,(a) ® W,(b),0 < p <min{m, n}. If
1
la—b|= 5 (m+n) —p+ 1, then W has a unique proper subrepresen-

tation V. In fact:

1
(a) if a—bzi(m+n)~p+ 1, we have
1 1
V = Wm_p(a+5p) X Wnﬁp(b—ip) ,

1 1
w/V = Wp_l(a—z(m—p+l))® Wm+n_p+1(b+—2—(m—p+l)) ,

and, as a representation of $l,.

VE Wm+n-2p® @ I/I/]m—nl;
1
(b) if b—azi(m+n)—p+l, then

1 1
V= Wp~l(a+5(m_p+ 1)) ® Wm+n—p+l(b_£(m*p+l)) ’

1 1
W/V = Wm_p(a’—‘z’p) ® Wn—p(b+5p) s

and, as a representation of $él,,

V= Wm+n® @ Wm+n—2p+2 .
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The proof of Proposition 4.2 already gives the uniqueness statements and
the isomorphism type under 8[,. The determination of V as a representation
of Y is made using Proposition 1.6 and Theorem 2.4. Since we shall not use
this result in the proof of the classification theorem, we omit the details.

Note that Proposition 4.5 (in conjunction with Corollary 4.7 below) enables
one to determine the composition series of any tensor product of evaluation
representations.

Proposition 4.5 has an interesting string-theoretic interpretation. In
(4.5)(a), the subrepresentation corresponds to the ‘‘annihilation’’ of the two
strings S,,(a¢) and S,(b): the intersection of the strings, together with the
two nearest neighbour elements, is discarded, leaving two new strings (in
exceptional cases, only one string might remain, or the strings might even
annihilate each other completely). Note that the two new strings are always
non-interacting. The annihilation interaction is illustrated in the following
diagram.

o) o) ) 0 e} 0 o
e} o) 0 0 o) O
o 0 0o o 0
FIGURE 1:

Annihilation of two strings.

The quotient representation in (4.5) (a) corresponds to the “‘fusion’’ of the
two strings S,,(a) and S, (b): the two new strings produced by this operation
are those which form the unique decomposition of S; U S, into the sum of
two non-interacting strings (in exceptional cases, only one new string is
produced). The fusion interaction is illustrated in the following diagram.
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) o) o) o) 0 o) o)
0 o) 0 o) o) e
o) o) o) o) o) o] o) 0 o) )
0 o) 0
FIGURE 2:

Fusion of two strings.

In (4.5)(b), the roles of the two strings are reversed, and the subrepresenta-
tion corresponds to the fusion of the two strings and the quotient to their
annihilation.

We now move on to consider tensor products of an arbitrary number of
evaluation representations. We begin with:

PROPOSITION 4.6. If & W, (a;) is irreducible, then it is highest weight
i=1

and the polynomial associated to it by Theorem 2.4(b) is the product of the
polynomials associated to each factor in the tensor product.

Proof. It follows from Proposition 1.6(2) that the tensor product of the
highest weight vectors in the W, (a;) is a highest weight vector in the tensor
product.

As for the second statement, by an easy induction argument using (1.6) (1)
and (1.6)(2), we find that

A (he) = ), hi iy ... e, modulo ), Y ® Yx, + Yx, ® Y

p=20

where the first sum is over all r-tuples k;, k», ..., k, such that k; > — 1 and
Y ki=k —r+ 1 (h_,is interpreted as the identity element 1). Hence, the

i
eigenvalue of 4, on the highest weight vector in ® W,.(a;) is, by Propo-
i=1

sition 2.6(a),
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! 1 1\«
di = ), Hm,-(a+5mi——) :

2

It is easy to see that this is equal to the coefficient of u~*-1in the product

! > 1 1\ * Pi(u+1)
H (1+ Z m,-(a+£m,~—£)k u_ki—l) = H —

=1 Pi(u)

where P, is the polynomial associated to the representation W (a;). This
completes the proof.

COROLLARY 4.7. If & Wy(a;) is irreducible, then it is unchanged,
i=1

up to isomorphism, by any permutation of the factors in the tensor product.

Proof. Let V=& W,/(a) and let V' be the result of applying some
i=1

permutation to the factors in the tensor product. Applying the same permuta-

tion to the highest weight vector in V gives a highest weight vector in V"’ of

the same weight. It follows from Proposition 2.3 that V is isomorphic to a

subquotient of V. Since ¥V and V' have the same dimension, they must be

isomorphic.

Remark. 1t is not true that the permutation of the factors is an
isomorphism V = V” of representations of Y.

We can now prove the ““only if’’ half of Theorem 4.1. Suppose that some
pair of strings S, (a;) and S, (a) are interacting. Then, by Corollary 4.7,

7

® Wn(a;) is isomorphic to a tensor product in which S, (a;) and S, (ax)

i=1
are adjacent. By Proposition 4.2, the latter representation is reducible.

We now turn to the proof of the ‘“if’’ part of Theorem 4.1. Note first that
there is no loss of generality in assuming that m; < - -+ < m, . Indeed, since
the strings S,,,(a;) are assumed to be non-interacting, it follows from (4.2)
and (4.7) that the tensor product of any pair of the evaluation representations
W,.(a;) is unchanged, up to isomorphism, by an interchange of the two

r

two factors. Hence, &® W, (a;) is unchanged, up to isomorphism, by any

i=1
permutation of its factors, since the permutation can be effected by a sequence
of interchanges of nearest neighbours.
We shall assume that m; < -+ < m, for the rest of the proof of (4.1).
The main step in the proof is the following result.
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PROPOSITION 4.8.  Suppose that the strings Sn(a;),1 <i<r, arenon-

interacting, and that m; < -+ <m,. Then & W,.(a;) Iis generated by
i=1
the tensor product of the highest weight vectors in the W, (a;).
Assuming this result for a moment, the proof of Theorem 4.1 is completed

as follows. Suppose that the strings S,,,(a;) are non-interacting. Note that, as

r

a representation of 8[,, ® W,.(a;) contains a unique highest component

i=1

Wi, M = ), m;. By (4.2), (4.7) and (4.8), if ® W, (a;) has a proper sub-

i=1
representation V, then V does not contain W,;,. But then the annihilator V°
of V is a proper subrepresentation of the dual

(® Wm,-(ai))* = Wp(—a)

i=0 i=0
which does contain its highest componeht. By (4.2), (4.7) and (4.8) again, this
1s impossible.

Remark. The following is an interesting alternative argument. By Pro-
position 2.10, each factor W,, (a;) has an invariant bilinear form. If W, and
W, are two representations of Y which have invariant forms < , >; and
< , >,, then there is an invariant bilinear map

(W& W) x (WL,® W)~ C
given by
<W Q@ Wy, WRW(> = <wy, wi><Wwy, Wy>, .

(The change of order is necessary because Y is not co-commutative.) In
particular, if W, Q W, = W, ® W;, then W; ® W, has an invariant bilinear

r

form. Using this observation, the fact that ® W, (a;) is unchanged, up to
i=1
isomorphism, by any permutation of the factors (which follows from (4.2) and

r

(4.7)), and an easy induction, one sees that ® W, (a;) has an invariant

i=1

bilinear form. But now a standard argument in the theory of Lie algebras
shows that a highest weight representation which carries a non-zero invariant
bilinear form is irreducible.

We must now give the

Proof of Proposition 4.8. By induction on r. The result is known if r = 1
or 2.
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We first prove that W = ® W,.(a;) is generated by the vector e, & Q’,

i=1 r

where Q' = e,,, ® * -+ & e, is the highest weight vector in W’ = & W (a;).

i=2
By the induction hypothesis, W’ is generated by Q’. From Proposition 1.11,
for any w’ e W, there exists y € N~ such that y. Q" = w’. Then

Y. (@®Q) = A1) (6e®Q) =@ w',

where the last equality follows from Proposition 1.6(3) and the fact that
x,.e =0. Hence, ¢g®@ W' C Y.(e,® Q’). Now an easy induction on i
proves that e, @ W’ C Y.(eg® Q) for 0 < i < m;: for the inductive step one
uses the fact that

e QW =xtee@W Ce,@W +x*.(e,QW').

This proves our assertion.
We now prove that ¢, ® Q'€ Y. Q, where Q = ¢, ® -+ ® en, . For any
i > 0, consider the equations )

k
4.9 x, . (e®Q) = (Z bidi_p_11x".e)RQ +e®x,.Q",
p=0

1 1
for k=0,...,r — 1, where b, = a; — 5 m +i— 5 , dy. 1 1s the eigenvalue of

he on Q" (and d_,; = 0). Equation (4.9) follows from Proposition 1.6 (3),

using the fact that Q" is a highest weight vector for Y. More generally, iterating
(4.9), we find that

4.10)  x;.(6®Q)

Il

Y Aei® QX .en® - ® ey,
j=1

where ;
Apj= X blde_p1;,
p=0
bj=aj+lmj—1 for j>2,
2 2
and d, ; is the eigenvalue of A, on €m;, | X X en, (and d_; ; = 1).

Using Proposition 1.6(1), one sees that
Are,j = My Ak jer + die,js1

so we are in the situation of (3.6). Assuming Proposition 3.7, which has yet
to be proved, we have
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detA = H (bj—bk—mj) .

1<k<j<r
Since the strings S, (a;) are non-interacting, this determinant is non-zero.

1
For, b; = by + m; for some j > k > 1 implies that g, — a, = 5 (m; + my),

which is impossible; and b; = b; + m; implies that a; — a; = —2- (mj—my) — i

1 L . S
= —2—|m, — my |- i, which is also impossible since i > 0.

Hence, equation (4.10) implies that e;_; is a linear combination of the
elements x, .(e;® Q") for 0 < kK < r — 1. An obvious (downward) induction
now proves that ¢, ® Q'€ Y.(e,, ® Q") = Y.Q for all / > 0. In particular,
we have proved that ¢g ® Q' e Y. Q.

All that remains is to prove Proposition 3.7. We show first that
bj — b,y — m;is a root of detA4 for 2 < j < r. In fact, we shall prove that,
if b, — b;_, — m; = 0, then the j-th and (j + 1)-th columns of the matrix A4
are the same. To begin with, 4y ; = Ay ;- = 1. Proceeding by induction on
k and using (3.6), we have

Agsrj-1=bj 1A j1 + dijo
= b;j_ 1A+ di,j-1
= (b —mj)Ar; + di, j-
= (b —m))Ap; + miAc; + di
= bjAy,; + di

= Ak+1,j s

which proves our assertion.

If j > k is any pair of indices, there is a permutation ¢ of {1, ..., r} such
that o(1) = 1 and o(k) = o(j) — 1. Let Q be the result of applying o to the
factors in Q’, and define W, and W similarly. As we remarked earlier, W’
and W are isomorphic as representations of Y, and the isomorphism must
preserve highest weight vectors. Hence, there is an isomorphism W = W,
which takes e; ® Q' to e; ® Q. for all i. Hence,

{xg (@®Q),....,x,_,.(&®Q)}
is linearly dependent if and only if

{xg (&®Q), ... x,_;.(6®Q)}
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is linearly dependent. By (4.10), the first condition holds if and only if
det A = 0, and the second if and only if detA4, = 0, where A, is the matrix
obtained by applying o to the parameters ai, ..., a,, My, ..., M,. This implies
that b, — by — m; is a root of detA if and only if bs() — Doy — Mo is a
root of detA,, and this is true by the first part of the argument.

We have now proved that b, — by — m; is a root of det A for all j > k.
This proves Proposition 3.7 in the case of interest to us, namely when the m;
are positive integers. But since (3.7) is a polynomial identity, it holds in
general.

The proof of Theorem 4.1 is now complete.

The following result completes the classification of the finite-dimensional
irreducible representations of Y.

THEOREM 4.11. (a) Every finite-dimensional irreducible representation
of Y is isomorphic to a tensor product of evaluation representations
Wm(a)-

(b) Two irreducible tensor products of evaluation representations are
isomorphic as representations of Y if and only if one is obtained from the
other by a permutation of the factors in the tensor product.

Proof. (a) Let V be a finite-dimensional irreducible representation of Y.
Let P be the polynomial corresponding to V in Theorem 2.4. The roots of P
form a set with multiplicities which, by (3.5), can be written as a union of non-
interacting strings. Let S,,.(a;) be the strings which occur (the m;, a; are not

necessarily distinct). By (4.1) and (4.6), the tensor product & W, (q;) is
i=1
irreducible and has P as its associated polynomial (by (4.7), the order of the

factors in the tensor product is immaterial). By Theorem 2.4, V is isomorphic
.
to ® I/Vm,- (ai)-
=1

(b) Suppose that
® Wm,-(ai) —= ® an(bj) .

are irreducible representations of Y. Then, both tensor products are associated
to the same polynomial P. The S, (a;) and the Snj(bj) both give decomposi-
tions of the roots of P into sets of non-interacting strings. By Proposition 3.5,
the decompositions are the same. This means that the factors W...(a;) and
W, (b;) are the same up to a permutation.
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