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100 A.S. LIPSON

Now if we adopt the usual convention (see [5]) that the value of
o (®) at a root of the Alexander polynomial is defined to be the mean
of its two “adjacent” values

(18) lim o (we®) and lim o (we”),

e—>0+ e—>0—
the fact that both of these values are well-defined broad oriented skein
invariants completes the proof that

COROLLARY 3. The signature function o.:S' — Z is a broad oriented
skein invariant for all links with non-zero Alexander polynomials. [

This is an intriguing result, especially in view of the fact that o (®)
is known to be a concordance invariant. It is natural to ask what relations
there may be between skein theory and concordance theory. Another obvious
question 1s that of what happens when the Alexander polynomial A, is
identically zero. In these circumstances the first Alexander ideal of the link
collapses and the signature function can be thought of as extracting
information about higher Alexander ideals. Kanenobu ([8] and [9]) has shown
that there exist infinitely many links with identical P-polynomials but distinct
second Alexander ideals, so there is no obvious reason to suppose that
this information should be skein invariant. However, I know of no counter-
examples to the conjecture that o,(®w) 1s a broad oriented skein invariant
for all links.

2. (GOERITZ MATRICES AND THE F-POLYNOMIAL

In this section I explore the relationships between the graph of a link,
its Goeritz matrix and Kauffman’s polynomial invariant F,(a, z). In particular
I show that the F(a, z), is essentially calculable from the Goeritz matrix
of a knot. This result makes use of facts about planar graphs discovered
by Whitney over 50 years ago.

2.1. THE GOERITZ MATRIX AND GRAPH OF A LINK

Kauffman [10] has defined a polynomial invariant F,(a, z) of oriented
links as follows:

Recall the definition of the three -Reidemeister moves, see Figure 3.
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FIGURE 3

Two link diagrams represent the same link if and only if one can be
transformed into the other by a finite sequence of these moves (see [18]).
We define a polynomial invariant A € Z[a*!, z**] of unoriented link diagrams
by the four axioms:

i) A (unknot) = 1.
ii) A is invariant under Reidemeister moves II and III.

iii) The effect of Reidemeister move I on A is to multiply by a or a™!:
— g1 —
(19) ANQ) = a7 ' A, AQ) = aA(~).

iv) If four link diagrams L., L_, L, and L, are identical except in a ball B
where they are as shown in figure 4 then

(20) ALL) + AL-) = 7(A(Lo)+A(Ly))

Axioms i)-iv) are sufficient to define A for all link diagrams. Now
given an oriented diagram we can temporarily forget its orientation and
calculate its A-polynomial. Let w be the writhe of the diagram (that is,

the number of positive crossings less the number of negative crossings).
Then

1) F(a,z) = Aa,z)-a™*
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is a link invariant, the Kauffman polynomial (see [10]). Note that in order
to define F;, we need the writhe, which is orientation-dependant, so F
1s an invariant of oriented links. However, for knots (1-component links),
reversing the orientation leaves the sign of any given crossing, and hence
the writhe, unchanged, so for knots F; may be regarded as an unoriented
invariant. If L = U:': , Li 1s an arbitrary oriented link with components L;,
then Fi(a, z) - a*?, where L = ). . IK(L;, Ly) is the total linking number of L
i1s unchanged by reversal of orientations of components, and so should be
regarded as an unoriented link invariant (This observation has also been
made by Turaev in [23]). Like P,(l, m), F;(a, z) behaves nicely with respect
to disjoint and connected sums of links:

(22) FL1 Lz(aa z) = FLl(aa z)" FLz(aﬂ z)
(23) Fron(az) =z Ya+a t—1) - F, (a,2) F(az2)

and is also invariant under mutation (see [1], [ 10]).

X X (=

+ o 0 ©

FIGURE 4

Now recall the definition of the Goeritz matrix of an unoriented connected
link diagram 2 in the plane (see [6]). Such a diagram divides the plane
into regions, which we proceed to colour black and white, chess board
fashion, so that adjacent regions are distinct colours (It is not hard to see,
using the Jordan curve theorem, that this can always be done). By con-
vention we colour the infinite region white. Now label the black regions
R,,R,, .., R, say. At each crossing in the diagram a region R; meets a
region R;, not necessarily distinct. This crossing takes one of two forms,
illustrated in Figure 5, and we allocate signs £ = =1 to the crossings
accordingly (The value &, which is defined only in the presence of a chess-
board colouring of a link diagram, should not be confused with the sign
of a crossing as defined in section 1. Unfortunately, the word “sign” is
now well-established for each of these values in the literature.)
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FIGURE 5

Now construct an (nx n) matrix A as follows: for i # j, let a; = Y &(c),
where the sum is over all crossings ¢ at which R; meets R; in the diagram.
The diagonal elements are given by a; = — Zi#j a;; so that the row
and column sums are all zero. A Goeritz matrix G for the link is then
obtained by discarding the first row and column of 4. Clearly G is not an
invariant of the link, or even of the link diagram (any other row or column
could have been discarded instead of the first one, for example). It is,
however, a relation matrix for H,(D;), where D, is the two-fold branched
cover of the link complement, and certain functions of it are true link
invariants. For instance, the absolute value of its determinant is the absolute
value of the determinant of the link. Further, G~! is a matrix of the linking
form on H,(D;). I shall show later in this section that, up to the writhe
and total linking number, Kauffman’s two-variable polynomial F(q, z) is a
function of G. This raises the (unanswered) question of precisely what
F,(a, z) has to do with, for example, this linking form.

The graph of a unoriented link diagram is constructed in a similar way.
Take a vertex v; in each black region R; of the chess board coloured link
diagram. Now for each crossing ¢ at which R; meets R;, add an edge
joining the corresponding vertices v;, v;. This edge is labelled with the sign
&(c) of the crossing. This construction provides us with a (signed) planar
graph with a particular planar embedding. Conversely, given a planar
embedding of a signed graph, one can construct a corresponding link diagram
by placing a crossing of the appropriate sign in the middle of each edge
and connecting these by arcs that run parallel to the edges of the graphs
until they meet in neighbourhoods of the vertices. The graph is connected

if and only if the link diagram is. See Figure 6 for an example and [2]
for more details.
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Notice that the graph of a connected diagram contains strictly more
information than the Goeritz matrix, all information about the particular
planar embedding and about loops in the graph being lost. Indeed, we can
make use of this to construct diagrams of distinct links with identical
Goeritz matrices, by picking graphs with more than one planar embedding.
However, the variation that occurs here can be kept under tight control
and I will make use of this fact later in this section.

2.2. KAUFFMAN’S POLYNOMIAL AND THE (GOERITZ MATRIX

I now proceed to the main result of this section, linking the Goeritz matrix
with Kauffman’s F-polynomial invariant. Recall the observation made in
section I that F,(a, z) = F,(a, z) - a*? is invariant under change of orientation
of components of L (where A is defined to be the total linking number
of L). Equivalently, we can define F (a, z) by

(24) Fiaz) = Agla,z)-a™™

where 2 is a diagram of the link L and w' is the proper writhe of 9,
defined to be the algebraic sum of the signs of all crossings where a
component of L meets itself. Note that the sign of such a crossing can be
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