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330 P. KAPLAN AND K. S. WILLIAMS

P<\> + Q A 1

by Proposition 3, we have J pI, where \j/ p
nf> + s a r<\> + s

s (r<t) + s) and s ps - qr ±1. Clearly we have

A + (r^ + s1) s {as2 + bsr - er2)

B A(\\f + \jjr) + \j/) (r(J) + s) (rcj) + s)

za((p§ + q) (r^ + s1) + {p§ + q) (rcji + s-))

s(2asq + b{sp + rq) - 2cpr),

- C v4\j/\j/ stf\i/\j/(>(|)-f s) (r^ + s1) &a(p(\> + q) (p§ + q)

z(aq2 + bqp - cp1)

Thus A, B, C are integral linear combinations of a, b, c. Similarly, a, b, c are

integral linear combinations of A, B, C. Hence GCD(A, B, C) GCD(a, b, c)
1 so that J is primitive.

3. The homomorphism 0

Let Od and 0D' be two orders of 0Dq with Od> C Od. Then we have

D' Df2 for some positive integer /. This notation will be used throughout
the rest of the paper. Our aim is to define a surjective homomorphism 0 from
the ideal class group CD> onto the ideal class group CD. After proving three

lemmas, we will prove the following theorem.

Theorem 1. (i) Every class C of CD> contains a primitive ideal I
fb + l/ZTl

where GCD{a, /) 1, such that thea,of the form I
b + \/D

ideal J a, is a primitive ideal of Od.

(ii)If 1 a,
fb + VD7 fb' + VD'

a(«GCD(a, /) 1) and I'
(GCD(a\ f) 1) are two primitive ideals in the same class C of CD

with E p/(pe^*), then the ideals

J ay
b + VD

and J'
b' + VD

a

of Od satisfy J' pJ and are in the same class 0(C) of CD.
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(Hi) The mapping C 0(C) is a homomorphism of CD> to on Cd-

Part (ii) of Theorem 1 will be the main tool in relating distances between

ideals of different orders of the same real quadratic field.

Lemma 1. A primitive ideal I
b + ]/D

a,
b + ]/D

contains a number

a xa + y where x and y are coprime integers, such that

the integer N(a) / a is prime to a given nonzero integer m.

1 I lb + \/D\\
Proof. We begin by noting that - N I xa + y I —-—II ax2 + bxy

- cy2 in view of (2.5). If \m \ 1 we take x 1, y 0, a xa

+ y I ay so that GCD(N(a)/a, m) GCD(a, 1) 1, as required.

Hence we may suppose that \m\> 1. Let pfi 1,2,...,n) be the distinct
prime factors of m. For i lf 2, n we set

(1.0), if Pifa,
(0, 1) if Pi
(1.1). if Pi

so that Pifax) y bx-ji-cy). Let x' and y' be integers such that
x' Xi(modand yf(modPi) for i 1, 2, n, so that
GCD(ax'2ybx'y'-cy'2, m) 1. The required number a is given by a xa

f b + 1/5 \ r x' y'

a pifc
a Pi I c

+ y where x
GCD(x',y')

y
GCD(x',y')

Lemma 2. Let m be a given nonzero integer. Every class C of CDb+]/D]
contains a primitive ideal a,

Proof. Let
b' + ]/D

a

with GCD(a, m) 1.

be a primitive ideal of the class C. By

Lemma 1 there exist coprime integers x and y such that

(3.1) GCD^'x2 + b'xy - c'y2, m) 1

Set a a'x2 + b'xy - c'y2 and let r and s be integers such that xs - yr 1.
Next set
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(3.2) p X +

so that

and

Then we have

(^i y,b 2a'xr + b'(xs + yr) - 2c'ys

a p \ xa + y
b' + ]/D

b + ]/D
,p(ra. + î(^)

£> + ]/Dl
n — n(A y

2
M xa' + y

P
b' + l/D

a

so that a,
b + \/D

a
b'+ ]/D

is an ideal equivalent to the primitive ideal

b + ]/D]
Hence, by Corollary 3, ay is primitive.

Lemma 3. Let C and C be two classes of CD. Then there exist

primitive ideals I a,
B + ]/D

e C and I'
B + ]/D

a eC'

with GCD(a, a') 1. Moreover the ideal II' is primitive and

B + l/D'II' aa

Proof. By Lemma 2 there exist primitive ideals I

and I'

a,
ô + l/D

eC

b' + l/D
a e C' with GCD(a, a') 1. As b D b' (mod 2)

b - b'
and GCD{a, a') 1 there are integers k and k' such that /rV - ka

Set 5 Z? + 2&tf b' + 2£V so that

5 + l/D/ and I'
ß + l/'-D

0 > 1
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Now D — B2 is divisible by both 4a and 4a\ and so, as GCD{a, a') — 1,

D - B2
D - B2 is a multiple of 4aa', so that c" e Z. Hence

is an ideal of Od and we have

II' I a
B D

\aa

2

B + 11/5

2

5 + i/Si

4aa'

B + 1/5

B + \/D
aa

B + 1 5

aa

Finally, any prime divisor of aa\ B, c" must divide GCD{a, B, a'c") 1

or GCD(a', B, ac") 1, as GCD{a, a') 1, which is impossible. Hence the

ideal II' is primitive.
We are now ready to prove Theorem 1.

Proof of Theorem 1. (i) By Lemma 2 the class C contains a primitive
+ YD'

with GCD(a, f) 1. Let k be an integer such thatideal / a,

2ak - h' (mod /)
b' _ /

if / 1 (mod 2)

ak + 5 — (mod /) if / 0 (mod 2)
2 2

and set b (b' + 2ak)/f, so that I a,
fb + yD'

As / is an ideal of

Ozy, (D' - f2b2)/4a is an integer, and so, as GCD{a, f)= 1, c (.D-b2)/4a
b + ]/ D

a,is also an integer, showing that J is an ideal of Od. Further,

as / is primitive, we have GCD(a, bficf2)= 1, and so GCD{a, b, c) 1,

showing that J is primitive.

(ii) If I' p/, by Proposition 3, there exist integers p, q, r, s with
ps - qr ±1 such that

(3.3)

fb' + 1//D7

2a'

fb + VP'
2a

+ q

fb + ]/D'
2a

p - ±
+ S1

fb - \/D'
2a

+ 5
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Rearranging the first equation in (3.3), we obtain the following equality
among elements of Od

from which we deduce that /1 qaa'. As GCD(aa', /) 1 there exists an integer

q' such that q q'f, so (3.3) can be rewritten as

b' + YD P_1 2a
Q

2a' rf m P ±
+ 6"

H b-]/D
2a

+ ^

which, by Proposition 3, shows that J' pJ.

(iii) Let CeCD> and C e CD>. By Lemma 2 and (i), we can choose an

f(b + ]/D
ideal /

r
and

f b' + \/D

in C with GCD(a, /) 1 and then an ideal

ft+ 1/5
in C with GCD{a',af) 1. By (i) a,

b' + )/D
a > : are ideals of Od and so we have b b' (mod 2). We

choose integers K' and K such that K'a' - Ka

b + \/d
b' + 2K'a', so that /

By Lemma 3 we see that //'

-b'
2

and I'

and set B b + 2Ä2?

£ + j/5^IB +]/D\1 r \

(^) is a primitive ideal of the

class CC. But the primitive ideals / a,
B+\/D J'

B + I/D
a,

J" fi+ 1/5
aa belong respectively to the classes 0(C), 0(C'), 0(CC'),

and, as JJ' J" by Lemma 3, we have 0(C) 0(C) 0(CC'), showing that 0

is a homomorphism: CD> C^,.

Finally we show that 0 is surjective. Let C be a class of CD and let

b ]/51
J a, 7 be a primitive ideal of C with GCD(a, f) 1 (Lemma 2).
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4a
cy and so GCD(üy bf ,cf2) - 1,

showing that / flb + VD\
IS a primitive ideal of Od>. Hence C is

the image of the class of I under 0.

Corollary 4. If the class C of Od> contains the primitive ideal

/ a,
b + \/ly where f2\ay then f\b and the class 0(C)

contains the primitive ideal J
- + VD

a_ I
f2' 2

of Od.

Proof. As D'Df2 b2+ 4 ac,andwe see that / | b, and^so

GCD(f, c) -1. By Corollary 2 we have / m b + VD'

and so, by Theorem 1, we see that

a 1/5

c, f + V'D

by Corollary 2, /
showing that 0(C).

f2
M

2c

c,

e 0(C). Finally,

- b

Cy
f + VD

4. Reduced ideals

From now on in this paper we suppose that D0 > 0 so that we are only
considering ideals in orders of a real quadratic field. An ideal I of Od can be

b + ]/D
written in the form / ad[ 1,0], where <\> By Proposition 1 (ii),

2a

if I a'd'[ 1,4>'] is another representation of /, then a'= ± a and

a b + ]/D D-b2
(]/ — (]) (mod 1). A real number of the form where c

a' 2a 4a
is an integer and GCD(a, b3 c) 1 is called a quadratic irrationality of
discriminant D.
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