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+ A 1
by Proposition 3, we have J = pl, where vy :pq) 1 p=

B rq)+s’ ;z_rq)+s
=¢e(rp +s) and € = ps — gr = = 1. Clearly we have

A = ea(rd +5) (rdp+5s) = e(as®+ bsr—cr?) ,

B = A(y+V) = ea(y+ ) (ro+5) (rp+5)
= ga((pd+q) (rd+s) + (PO +q) (rd +5))
= ¢(2asq + b(sp +rq) — 2cpr),

— C = Ayy = eayy(rd +5) (rd+5) = ea(pd+q) (pd +q)
= g(aq*+bgp —cp?) .
Thus A, B, C are integral linear combinations of a, b, c. Similarly, a, b, ¢ are

integral linear combinations of 4, B, C. Hence GCD(A, B, C) = GCD(a, b, ¢)
= 1 so that J is primitive.

3. THE HOMOMORPHISM 6

Let Op and Op. be two orders of Op, with Op. C Op. Then we have
D’ = Df? for some positive integer f. This notation will be used throughout
the rest of the paper. Our aim is to define a surjective homomorphism 6 from
the ideal class group Cp- onto the ideal class group Cp. After proving three
lemmas, we will prove the following theorem.

THEOREM 1. (i) Every class C of Cp contains a primitive ideal 1

[a fb+1/17]
3 2 b

of the form I = where GCD(a, f) = 1, such that the

b+ D

ideal J = [a, is a primitive ideal of Op.

(i) If 1= [a, ﬁ?—z—l/—ﬁ—] (GCD(a, f)=1) and I = [a’, LZI/—D-]

(GCD(a’, f) = 1) are two primitive ideals in the same class C of Cp:

with I' = pl(peK*), then the ideals

b+|/D

2

, b+ YD

2

J = [a, and J' = [a

of Op satisfy J = pJ and are in the same class 0(C) of Cp.
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(iii) The mapping C — 8(C) is a homomorphism of Cp: to on Cp.
Part (ii) of Theorem 1 will be the main tool in relating distances between
ideals of different orders of the same real quadratic field.

b+)/D

LEMMA 1. A primitive ideal I = [a, ] contains a number

b+)/D

oa=xa+y ( ) , Where x and y are coprime integers, such that

the integer N(o)/a is prime to a given nonzero integer m.

, _ 1 b+1/D
Proof. We begin by noting that - N | xa + y 5 = ax? + bxy
a

— cy? in view of (2.5). If |m|=1 we take x=1, y=0, a=xa

b+)/D .
+ y = a, so that GCD(N(0))/a, m) = GCD(a, 1) = 1, as required.

2
Hence we may suppose that |m|> 1. Let p;(i=1,2, ..., n) be the distinct
prime factors of m. For i = 1,2, ..., n we set
(19 0) ’ lf pi/{/a ’
x,y)= (0,1, if pla, pfc,

(131)9 lf pi|as pilca

so that p;Xax? + bx,y; — cyf. Let x* and »° be integers such that
x'=x,modp;) and Yy =y, (modp,) for i=1,2,...,n, so that
GCD(ax'*+bx'y"—cy’?, m) = 1. The required number o is given by a = xa

(b+1/5
+y 5

14 4

X Yy
. y = ‘
GCD(x’, y") GCD(x', y")

) , where x =

LEMMA 2. Let m be a given nonzero integer. Every class C of Cp
b+1D

contains a primitive ideal [a, ] with GCD(a, m) = 1.

b'"+1/D
Proof. Let [a', Tlf] be a primitive ideal of the class C. By

Lemma 1 there exist coprime integers x and y such that
(3.1 GCD(@'x*+b'xy—c'y, m)=1.

Set a = a'x? + b’xy — ¢’y? and let r and s be integers such that xs — yr = 1.
Next set
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b"—1D

(3.2) p=x+ (—ZI—L) ¥, b=2a'xr + b'(xs+yr) — 2c'ys,

a
so that

e [557)
a=plxa+y
2

and

12 [142))

2 2

Then we have

[ b+ /D , b +1)/D ) b +1/D
a, =p|lxa+y|— ], +s | ——
2 2 2
b+ D
= a gy T
g 2
b+)D] . . . o
so that |[a, is an ideal equivalent to the primitive i1deal

b+1/D

[,b’ﬂ/l—D
a,————

5 ] . Hence, by Corollary 3, [a,

is primitive.

LEMMA 3. Let C and C' be two classes of Cp. Then there exist

B+ 1D B+ D
primitive ideals I = [a, 21/'] eC and I = [a’, 21/'] eC’
with  GCD(a,a’) = 1. Moreover the ideal II" is primitive and

B+ D
11" = [aa’, 1/—] .
2 ‘
. e b+)D
Proof. By Lemma 2 there exist primitive ideals I = |a, 5 eC

and I’ = with GCD(a, a’) = 1. As b =D = b’ (mod 2)

b'"+ /D
[a’, —21/—] eC’

b-0b

and GCD(a, a’) = 1 there are integers k and k£’ such that k'a” — ka = -

Set B=b + 2ka = b’ + 2k’a’ so that

g2

and I’ = [a’,

B+ﬂ)].

2
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Now D — B2 is divisible by both 4a and 4a’, and so, as GCD(a, a’) =~l,
D — B? B+|)D

7

D — B?is a multiple of 4aa’, so that ¢’ =

e Z. Hence [aa’,
daa

is an ideal of Op and we have

B+|'D\ , (B+ 1,"75) (B + ],/5) 2)
IlI' = |ad',a , a ,
=57) (7)1

B+ ]/T))

= {aa,

Finally, any prime divisor of aa’, B, ¢’" must divide GCD(a, B, a’'c”’) =1
or GCD(a’, B,ac’”) = 1, as GCD(a, a’) = 1, which is impossible. Hence the
ideal 71’ is primitive.

We are now ready to prove Theorem 1.

Proof of Theorem I. (1) By Lemma 2 the class C contains a primitive

b+ D ]

ideal I = [a, with GCD(a, f) = 1. Let k be an integer such that

2ak = — b’ (mod f) , if f=1(mod2),

r

akE—%+D§(modf), if  f=0(@mod?2),

b+ D’
and set b = (b"+2ak)/ f, so that [ = [a, f—;———

] . As I is an ideal of

Op+, (D"~ f?b?)/4a is an integer, and so, as GCD(a, f) = 1, ¢ = (D—b?)/4a
b+ l/l—)

is also an integer, showing that J = [a, ] is an ideal of Op. Further,

as I is primitive, we have GCD(a, bf,cf? = 1, and so GCD(a, b, c)=1,
showing that J is primitive.

(1) If I" = pl, by Proposition 3, there exist integers p, g, r, s with
ps — qr = =+ 1 such that

(3.3) (fb + 15)
w~ P\ | T4
fb'+ D" 2a

_ 0=+ (r (“fb_l/D’) +s
2a’ . (fb+l/D') +S’ h 2a '
2a
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Rearranging the first equation in (3.3), we obtain the following equality
among elements of Op

() o (42) ) o 2] ).

2 2

from which we deduce that f| gaa’. As GCD(aa’, f) = 1 there exists an integer
q’ such that g = g’ f, so (3.3) can be rewritten as

(b+1ﬁ)) )

D +q

A i oy (22D,

24’ _rf(b+1/5) +S’ p_‘( (2a) S)'
2a

which, by Proposition 3, shows that J' = pJ.

(iii) Let Ce Cp: and C' € Cp-. By Lemma 2 and (i), we can choose an

_ b+ )/D\] . , .
ideal I = |a, f 5 in C with GCD(a, f) =1 and then an ideal
[ b"+ VD b+ 1D
I'=\1a,f (—21_—)] in C’ with GCD(a',af) = 1. By (i) [a, 2V_]
b +\/D _
and |a', —— | are ideals of Op and so we have b = b’ (mod 2). We

14

choose integers K’ and K such that K'a" — Ka = ,and set B = b + 2Ka

=b"+ 2K'a’, so that I = [a,f(B+21/5)] and I’ = [a,f(B+2‘/E)].

B+ D\] . e
By Lemma 3 we see that I1’ = |aa’, f is a primitive ideal of the
B+1D B+1D
class CC’. But the primitive ideals J = [a, 5 , J = [a’, > s

) [,B+1/TD
J" = laa’,

belong respectively to the classes 6(C), 6(C"), 6(CC",

and, as JJ' = J” by Lemma 3, we have 6(C) 6(C") = 6(CC"), showing that 6
is a homomorphism: Cp- = Cp.

Finally we show that 6 is surjective. Let C be a class of Cp and let

[ b+1D
J=la,

be a primitive ideal of C with GCD(a, f) = 1 (Lemma 2).
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b2

Then we have GCD(a, b, ¢) = 1, where = ¢, and so GCD(a,bf,cf?) =1,

4a
b+ /D

showing that I = [a, f ( )] is a primitive ideal of Op-. Hence C is

the image of the class of I under 0.

COROLLARY 4. If the class C of Op: contains the primitive ideal

)

where  f?

a, then f|b and the class 6(C)

b
—+yD
flf

contains the primitive ideal J = }—2 , —7—— of Op.

Proof. As D' = Df?= b2+ 4ac, and f?

a, we see that f|b, and so

A5 2]

GCD(f,c) = 1. By Corollary 2 we have I = (
L]

2a 2
b -
— ? + VD
and so, by Theorem 1, we see that |, ———7— € 6(C). Finally,
b - b
]/T)+—) —+ VD
a b/f+)D ( f f
by Corollary 2, J= |—,———| = ——— S A—
f? 2 2¢ 2

showing that J e 6(C).

4. REDUCED IDEALS

From now on in this paper we suppose that D, > 0 so that we are only
considering ideals in orders of a real quadratic field. An ideal / of Op can be

b+)D

written in the form I = ad|[1, ¢], where ¢ = . By Proposition 1 (ii),

2a
if I=a'd][l,¢’] is another representation of I, then ¢ = +a and
a b+ 1D D — b2
¢’ = — ¢ (mod 1). A real number of the form 2f , Where ¢ =
a’ a 4a

is an integer and GCD(a, b, c) = 1 is called a quadratic irrationality of
discriminant D.



	3. The homomorphism θ

