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connection is the trivial connection on this module. Moreover, it is easy to

show that the sequence (2.1) is horizontal with respect to the respective Gauss-

Manin connections.

Suppose now that S is an affine curve over K and Z 0. Then the short

exact sequence (2.2) becomes

0 - f*Q's(X)&x/s(-!)üx/s &X/S -* 0 •

Taking cohomology of this sequence yields the Leray long exact sequence

(2.3) - H'dr(X/S) H'm{X/S) - - T

3. Sections of a family and extensions of connections

Suppose now S is a smooth connected affine curve over a field K of
characteristic zero and / : X -> S is a smooth proper morphism of schemes over

K, with geometrically connected fibers. These assumptions will be in force

throughout the remainder of this paper. Suppose Z is a closed subscheme of
X finite over S. Suppose the normalization n : Z -> Z of Z is smooth over S.

After repeated blowing ups at closed points we find a scheme m:X' X,
which contains Z and is such that the restriction of m to Z is n. Let X
equal the complement in X' of the singular locus of X'/S. This locus is a closed
subscheme of X' disjoint from Z. The long exact sequence 2.1 becomes

(3.1) 0 - K[S] -+ K[Z] - HlDR{Z/S, Z) - HlDR{X/S) 0

Let H denote the pullback of HxDR(X/S, Z) by means of the horizontal mono-
morphism from HlDR(X/S) into HlDR(X/S). We claim that H is independent
of the choice of W Indeed, there exists a non-empty affine open subscheme S'
of 5 such that the map from X xsS' to X' : X x sS' is an isomorphism.
If Z' ZxsS\ then Z' is smooth over S' and it is easy to see that
H (x) K[S'] HlDR(X7S', Z'). Hence H is an extension of the connection
H1Dr(X'/S',Z') on S' to a connection on S. Since such an extension is unique
if it exists, it follows that H is independent of the choice of X and so we set

Z) H. We obtain from the previous exact sequence, a natural
exact sequence

0 ->• AT[S] K[Z]-+HlDR(X/S,Z)-+ 0

For a section 5 of X/S,wewill also use 5 to denote the induced reduced
closed subscheme s(S) of X when convenient. Now suppose s and t are two
distinct sections of X/S. Let Z s u t.ThenZ, the normalization of Z, is
just two disjoint copies of S and so is étale over S. (The sections 5 and t
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induce maps from S to Z which we denote by the same names.) The map
t* - s* :K[Z] is horizontal, surjective and its kernel is the image
of AT[S] under the map in (3.1). Hence we obtain a horizontal exact sequence

0 - K[S] -* H]dr(X/S, Z) - H\jr(X/S) - 0

and so an extension of HlDR(X/S) by the trivial connection. We let E(s, t)
denote this extension if s^t and E(s, s) denote the trivial extension of
H'DR(X/S) by K[S], We call the class of E(s, t) in Ext (H'dr(X/S ),K[S])
M(s, t)

Proposition 1.3.1. Suppose r,s,t are sections of X/S. Then

M(r, t) M(r, s) + M(s, t)

In particular, M{r,s) -M{s,r).
Proof. If r, s and t are not distinct the proposition is obvious from the

definitions. Therefore suppose that r, s and t are distinct. If T is a subset of
{r, s, t) let Zj \J ueTu. Either by replacing X by X or by shrinking S and

using Corollary 1.1.3 we may assume that Z{r>SJ} is étale over S. Let
denote the complex Cl'X/s,zT' We set H{T) HlDR{X/S, ZT). Then from the

exact sequence of complexes

0 ^{r,sxtf ^{r,s} <8> ^{s,t) ^ s} 0

(where the first map is the diagonal and the last is the difference) we obtain

an exact sequence

0 -> H(r, s, t) -» H{r, s) © H(sy t) H{s)

moreover, H(s) HlDR(X/S) and the last map is the difference of the maps

from H(r,s) and from H(s,t) to Hlm(X/S) (and is, in particular, a

surjection).
Next from the exact sequence of complexes

where 5/ is the complex (W[S] ->0->...) we

obtain an exact sequence

0 K[S] -> H(r, s, t) H{r, t) 0

Moreover the first map is the composition of the map from K[Z{r>s t]\ into

H(r,s,t) and the map h from K[S] into K[Z{r>s>(}] characterized by

r*h(f) t*h(f) 0 and t*h(f) /. It follows from this that H(r, t) is the
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Baer sum of H(rfs) and H(s,t). Since all the maps discussed above are

horizontal this statement is true on the level of connections as well. This proves
the proposition.

Suppose X' is a smooth scheme over S and g:X' X is an S-morphism.
Then the natural map g* : HlDR(X/S) HlDR(X/S) induces a natural map
^*:Ext(//^(^V5),^[^])->Ext(//^(X/5),^CT). By the naturality of all

our constructions we have:

Proposition 1.3.2. Suppose X7S has geometrically connected fibers
and s and t are two sections of X7S. Then

M(gos, got) g*M(s, t)

Suppose X0 is a smooth connected scheme over K and X S x KX0. Then

dx/s) K[S] 0 (Qx0/k> dx0/x)

and so in particular,

H'dr{X/S) Ä-[S] ® H"dr{X0/K)

and the Gauss-Manin connection

X:HlDR(X/S)

is d,id).If H HlDR(X/S),itfollows from this that

ExtCtf^fS]) HUH, V) s Horn

Explicitly, this last isomorphism can be described as follows:

if he Hom(//, 0
then hmod VHgoesto the map (me(x)co)modcfW[S]).

Proposition 1.3.3. Suppose X(l is a smooth connected scheme
over K and XSxkXc, Suppose u and u are two morphisms
from S to X0 and s(id,u)andt (id,v). Then M(s,t) is
v* - u* as an element of UomK(H\w(X0/K), H\m(S/K)).

Proof. We may suppose that snt=0. Let Z s\jt. Suppose
h HDR(X/S)—> HDR(X/S,Z)isa section. Let ({oiy}, {fu, v\) be a one-hyper-

cocycle for (Q'Xll/K,dXij/K) and [co] the image the class of 1 (x) ({couM/^})
in H)ir(X/S). Then V[co] =0. We wish to compute V/i([co]) - A(V[a>])

V/z([co]). We will abuse notation and identify co^ with 1 <g) (ov in Qlx(U)
an<i fu,vwith 1 (x) fuyin .Xx((j n V). Let co denote the image of co^ in

Then /i([co]) is the class of
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({©£/ - dx/sgu} AfU, V ~ (gu ~ £k)})

for some one-chain {g<y} with coefficients in j@x such that

s*fu, v — u*fUjV s*(gu- gy) and t*fu>v= u*fu>v= t*{gv- gv)

Let y\y (ùu - dgv. Now

s*t\u - s*r|K s*dfUi v ~ s*d{gu - gv) 0

by the conditions that must satisfy and the fact that ({cou)Afu,v}) is a

hypercocycle. Similarly, t*r\u - t*r\v 0. Let t\s and ip be the the elements of
Qls determined by the cocycles {s*^} and {t*^} respectively.

Now to compute V/z([co]) we must lift cbu - dX/sgu to a section of QX)Z.
Let es>u and et>u be elements of j0x(JJ) such that s*eSj y lt*efry 0,

t*etjU 1 and s*et>u 0. These elements exist since Z is étale over S. Then

rit/ - (eSiUT}s + Ct,uT\t) is such a lifting. To compute V/z([co]) we must take the

hyper-coboundary of ({t^ - (es>uv\s + ettUi\t)}, {fu, v ~ (gu ~ gv)})- It is

({r\s ® dX/ses> u + x\t (x) dx/set> u) * {h* ® {es, u ~ es, v) + h/ ® ißt, u ~ £t, v)} > 0)

The class of this hypercocycle is the image of

T|t— t\s6in Q5 <g) HlDR(X/S,

(recall that we've determined a map of ^[S] into Z)). Hence

VA([©]) n, -
The proposition now follows from the fact that

({•ns + ö?5*gt/},{5*gt/-5*gK}) W*({cOy},

and

((ri, + dt*gu),{t*gu - t*gy}) y*({co

Corollary 1.3.4. If, in the above, u and v are constant, then

M{s, t) 0.

4. Abelian schemes

Suppose now that A is an Abelian scheme over S. Let m\A xsA Abt
the addition law and e the zero section. For s, t e A (S), let M(s) M(e, s) and

s + t m(s, t).

Theorem 1.4.1. The map M from A(S) to Ext(HlDR(A/S),K[S])
is a homomorphism.
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