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connection is the trivial connection on this module. Moreover, it is easy to
show that the sequence (2.1) is horizontal with respect to the respective Gauss-
Manin connections.

Suppose now that S is an affine curve over K and Z = <. Then the short
exact sequence (2.2) becomes

0= f*Qs® Qyys(—1) = Qs = Qyys— 0.
Taking cohomology of this sequence yields the Leray long exact sequence

2.3) .o Hog(X/S) S QL @ Hipp(X/S) = Hige (X) = Hip (X/S) =

3. SECTIONS OF A FAMILY AND EXTENSIONS OF CONNECTIONS

Suppose now S is a smooth connected affine curve over a field K of
characteristic zero and f: X — Sis a smooth proper morphism of schemes over
K, with geometrically connected fibers. These assumptions will be in force
throughout the remainder of this paper. Suppose Z is a closed subscheme of
X finite over S. Suppose the normalization n:Z — Z of Z is smooth over S.
After repeated blowing ups at closed points we find a scheme m: X' - X,
which contains Z and is such that the restriction of m to Z is n. Let X
equal the complement in X’ of the singular locus of X'/S. This locus is a closed
subscheme of X’ disjoint from Z. The long exact sequence 2.1 becomes

(3.1) 0 K[S] = K[Z] = H-(Z/8, Z) = HL(X/S) = 0

Let H denote the pullback of H, ()~(/S, 2) by means of the horizontal mono-
morphism from H,(X/S) into H})R()N(/S). We claim that H is independent
of the choice of X. Indeed, there exists a non-empty affine open subscheme S’
of S such that the map from X XS to X' =:X XS is an isomorphism.
If Z'"=27ZxsS’, then Z' is smooth over S’ and it is easy to see that
H® K[S'] = Hpg(X'/S',Z"). Hence H is an extension of the connection
Hpp(X'/S',Z") on S’ to a connection on S. Since such an extension is unique
if it exists, it follows that H is independent of the choice of X and so we set
HlDR(X/S, Z) = H. We obtain from the previous exact sequence, a natural
exact sequence

0= K[S] = K[Z] = H,n(X/S, Z) — H' ,(X/S) = 0 .

For a section s of X/S, we will also use s to denote the induced reduced
closed subscheme s(S) of X when convenient. Now suppose s and ¢ are two
distinct sections of X/S. Let Z = s U ¢. Then Z, the normalization of Z, is
just two disjoint copies of S and so is étale over S. (The sections s and ¢
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induce maps from S to Z which we denote by the same names.) The map
t* —s*:K[Z] — K[S] is horizontal, surjective and its kernel is the image
of K[S] under the map in (3.1). Hence we obtain a horizontal exact sequence

0= K[S] = Hpp(X/S,Z) = Hpp(X/S) = 0

and so an extension of H,(X/S) by the trivial connection. We let E(s, )
denote this extension if s+# ¢ and E(s,s) denote the trivial extension of
H})R(X/S) by K[S]. We call the class of E(s, ) in Ext(HLR(X/S),K[S])
M(s, t) .

PROPOSITION 1.3.1. Suppose r,s,t are sections of X/S. Then
M(r,t) = M(r,s) + M(s, t) .
In particular, M(r,s) = — M(s, r).

Proof. 1If r,s and ¢ are not distinct the proposition is obvious from the
definitions. Therefore suppose that r, s and ¢ are distinct. If 7 is a subset of
{r,s,t} let Z; = UueTu. Either by replacing X by X or by shrinking S and
using Corollary 1.1.3 we may assume that Z, ;,, is étale over S. Let “r
denote the complex Qg , . We set H(T) = Hpg(X/S, Z7). Then from the
exact sequence of complexes

0 - g{r,s,t} = %r,s} ® %S,t} - %s} ~—> O

(where the first map is the diagonal and the last is the difference) we obtain
an exact sequence

0—>H(r,s, t) = H(r,s) @ H(s, t) > H(s)

moreover, H(s) = H}DR(X/S) and the last map is the difference of the maps
from H(r,s) and from H(s, ) to H})R(X/S) (and is, in particular, a
surjection). |
Next from the exact sequence of complexes
00— %r,s,t} - %r,t} - y—) 0

where & is the complex (7. 4/ P00 ..) = (K[S]>0—...) we
obtain an exact sequence

0— K[S] > H(r,s,t) > H(r,t) = 0

Moreover the first map is the composition of the map from K[Z, ; 5] into
H(r,s,t) and the map A from KI[S] into KI[Z ] characterized by
r*h(f) = t*h(f) = 0 and t*h(f) = f. It follows from this that H(r, ) is the
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Baer sum of H(r,s) and H(s, t). Since all the maps discussed above are
horizontal this statement is true on the level of connections as well. This proves
the proposition. [

Suppose X’ is a smooth scheme over S and g: X’ — X is an S-morphism.
Then the natural map g*:H ,,(X/S) = Hr(X/S) induces a natural map
g% Ext(Hpr(X'/S), K[S]) = Ext(H,(X/S),K[S]). By the naturality of all
our constructions we have:

PROPOSITION 1.3.2. Suppose X'/S has geometrically connected fibers
and s and t are two sections of X'/S. Then

M(gos, got) = g*M(s, 1) .
Suppose Xj is a smooth connected scheme over K and X = S X xX,. Then
Q5. dxss) = K[S] ® (Q;(O/K, dxy/x)
and so in particular,
Hpr(X/S) = K[S] ® Hpr(Xo/K)
and the Gauss-Manin connection
Vi Hpp(X/S) = Q5 @ kisyH pr(X/S)
is (d,id). If H = H,(X/S), it follows from this that
Ext(H, K[S]) = H'(H, V) = Homg(H ), (Xo/K), H. o(S/K)) .
Explicitly, this last isomorphism can be described as follows:
if heHom(H QH=0l®H,
then & mod VH goes to the map (o€ H bz (Xo/K)— h(1 ® ®)mod dK[S]).

PROPOSITION 1.3.3. Suppose X, is a smooth connected scheme
over K and X =S8 xyxX,. Suppose u and v are two morphisms
Jrom S to X, and s = (id,u) and t =(d,v). Then M(s,t) is
V¥ —u* as an element of Homg(Hpz(Xo/K), H. o (S/K)).

Proof. We may suppose that snt=@. Llet Z=2suU £ Suppose
h:Hpp(X/S) = H o (X/S, Z) is a section. Let ({ou},{fv,v}) be a one-hyper-
cocycle for (Q;(O/K,dXO/K) and [®] the image the class of 1 ® H{ou}, {fu.v})
in Hpy(X/S). Then V[] = 0. We wish to compute VA([o]) — A(V]o])
= Vh([o]). We will abuse notation and identify o, with 1 ® oy in QL (U)

and fy,y with 1 ® fy, v in Zx(Un V). Let @y denote the image of Wy in
Q%,s(U). Then A([w]) is the class of
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({COU_ dx/sguts{fuv—(gu— gv)})

for some one-chain {gy} with coefficients in 4’y such that

s*fuv = w* fu v = s*(@gy—gy) and *fuyv=0*fuy=1*gu—28y) .

Let ny = wy — dgy. Now

s*ny — s*ny = s*dfuy v —s*dgu—gv) =0

by the conditions that {gy} must satisfy and the fact that ({wy},{fv v}) is a
hypercocycle. Similarly, #*ny — #*n, = 0. Let 1, and n; be the the elements of
Qfg determined by the cocycles {s*ny} and {7*ny} respectively.

Now to compute VA([w]) we must lift ®, — dx,sgy to a section of Q/IY,Z.
Let e,y and e,y be elements of Zx(U) such that s*e,, = 11*e, y = 0,
t*e, y = 1 and s*e, y = 0. These elements exist since Z is étale over S. Then
Nu — (es,uMs + €, yM,) 1s such a lifting. To compute VA([w]) we must take the
hyper-coboundary of ({ny— (&, vns + e,vM)}, {fu.v — (gu—8&n}). Tt is

({Tls® dxsses,u+ M@ dxsse,ut, (N @ (es,u—ée,v) + @ (e,uv—e, )}, O) .
The class of this hypercocycle is the image of
N -M€Qf in QiR Hpy(X/S,Z)

(recall that we’ve determined a map of K[S] into HLR(X/S, Z)). Hence

Vha([o]) =n, — ;.
The proposition now follows from the fact that

({ns + ds*gu}, {s*gu — s*gv}) = u*({ou}, {fuv})

and

(n, + dt*gu}, {t*gu — t*gv}) = v*({ou}, {furv)) . U

COROLLARY 1.3.4. If, in the above, u and v are constant, then
M(s, t) = 0.

4. ABELIAN SCHEMES

Suppose now that A is an Abelian scheme over S. Let m: A XsA — A be
the addition law and e the zero section. For s, t € A(S), let M(s) = M(e, s) and
s+t =m(s,1).

THEOREM 1.4.1. The map M from A(S) to Ext(H})R(A/S),K[S])
is a homomorphism.
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