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inversive arc-length as the parameter, so that the ‘‘curvature’’ S becomes an
intrinsic invariant of the curve in inversive geometry. And in this case it turns
out that S has constant imaginary part. To see this we describe S in terms of
the more familiar Euclidean curvature and its derivatives with respect to
Euclidean arc-length.

The Euclidean and inversive arc-lengths are related by the equation:
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Using these expressions we can calculate the Schwartzian as:
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Regarding the vectors f| and f, as column vectors, we obtain a 2 by 2 matrix
h = (f,, f1)€G, and according to the calculation above we have:

- 0 1
(f2, S0 = (f2, fD) (S O)
Thus A(v) and g(v) (cf. §7) are equal up to left multiplication by a constant
element of G. This interprets Cartan’s canonical frame (f1, f2) as the unique
frame (up to a constant element of G) forming the columns of a matrix in G
which moves the standard curve y = x3/6 to the given curve with contact up
to 4th order at the given point.

§9. LOXODROMES

To calculate the curves with Q constant we solve the equation:
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and use the fact that o(v) = g(v)*0 to obtain the curve (where * refers to the
action of S, (C) on C by Mobius transformations).

Now
0 1 . 0
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invertible constant 2 by 2 matrix. Since A+ — 1 = 0 we have

g:0=—C-(e2)

which is a linear fractional image of an equiangular spiral.

FiGURE 9.1

In particular, curves for which Q =0, which we may call inversive
geodesics, have
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FIGURE 9.2
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and are linear fractional images of the equiangular spiral with angle + n/4
given by

G(V) — e(li‘l)V —_ eVei[V .

We note in particular that the inverse length of ‘“one loop’’ of the inversive
geodesic is 2n. Figure 9.1 is a picture of one such loop.

Equiangular spirals have two accumulation points, the poles, one at the
origin and the other at infinity. These poles determine the family of circles
through them (straight lines in this case) as well as a second family of circles
orthogonal to the first. The equiangular spiral meets each family in fixed
angles. The same is true for linear fractional images of this configuration, and
with the same angles.

The connection between Q and the angle ¢e(0,n/2) between the
loxodrome and its first family of circles is given by

tang = Q+ )/ Q*+ 1.

In figure 9.2, we show the inversive geodesic with poles at + 1 together
with its first family of circles.

In figure 9.3 we see the loxodrome again, in a perspective view this time,
thrown up onto the two-sphere by the inverse of stereographic projection,
along with its second family of circles.

We remark that it seems to be impossible to show the inverse geodesic in
such a way as to allow more than one or two loops to appear to the eye, while
at the same time allowing no distortion of the figure. This may account for
a number of distorted diagrams of this loxodrome which have appeared in the
literature. Of course one can picture many loops of some equiangular spirals,
say with O > 0. At the other extreme with O < 0 we have a circumstance for
which, in any scale, the corresponding equiangular spiral appears to the eye
to be a straight line issuing from the origin. However as one ‘‘zooms’’ in or
out this ‘‘straight line’’ appears to rotate about the origin.

§10. THE COMPLEX OF GEOMETRIC FORMS ON A CURVE IN R?

Among the various forms on a curve in R?, some, such as o and Q, can
be thought of as arising from the local way in which the curve is embedded
in R?; that is they arise from the local geometric nature of the embedding
and are invariant under Mobius transformations. These are the ‘‘smooth local
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