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246 V. 1. ARNOLD

characteristic of the first family, starting at a small distance € from the point
1 (where the distances of points 1-4 to the origin are of order 1). The endpoint
of this characteristic, taken at the level of point 4, lies at some distance from
the singular characteristic 14, namely, at a distance ae + be?lne + ... . The
logarithmic term describes the scattering at the origin: in a regular family the
distance would be ag + be? + ... .

In the 3-dimensional physical space (i.e. for space-time of dimension 4)
generic wave fronts (travelling in inhomogeneous media and governed by a
variational principle) acquire singular lines, connecting them with waves of
different kinds and moving with the wave fronts.

It is interesting to note that the case n = 1 is more difficult than n > 1.
The results are at present formal in both cases. They probably hold for the
C> problem both for n = 1 and n > 1. The divergence of the normalizing
series in the analytical problem is proven in the case n = 1, while for n > 1
there exists still some hope that the series converges. The qualitative results,
described above, are independent of the convergence of the series: we need
only finite segments of the series.

§4. LEGENDRE FIBRATIONS AND SINGULARITIES

The simplest examples of Legendre fibrations are the projectivized
cotangent bundles

PT*V" - V"
and the ‘“‘forgetting of derivatives’’ mappings
JYM,R) - J°(M, R)

(in coordinates: (p, q, y) — (g, »)).

Definition. A Legendre fibration is a fibration of a contact manifold with
Legendre fibres.

THEOREM. All the Legendre fibrations of a given dimension are locally
contactomorphic (locally = in a neighbourhood of any point of the total
space).

To prove this theorem it is sufficient to construct a local isomorphism of
an arbitrary Legendre fibration with one of the preceding examples.
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Let us project a contact hyperplane from its contact point in the total space
of the fibration to a base point. The image is a contact element (a hyperplane
in the tangent space to the base of the fibration) since the tangent plane to
the Lagrangian fibre lies in the contact hyperplane.

Thus we have defined a mapping from the space of an arbitrary contact
fibration to the space of the contact elements of its base (that is, to the space
of the projectivized cotangent bundle of the base space).

This mapping transforms fibres into fibres (over the same points). The
nondegeneracy of the initial contact structure implies that this mappping 1s
nondegenerate (it is a local diffeomorphism). And it is easy to see that the
initial contact structure and the natural contact structure of the contact
elements’ space agree.

Thus we have obtained a unique local normal form of any Legendre fibra-
tion. At the same time we have defined a natural projective structure in the
fibres of any Legendre fibration.

This projective structure is a contact analogue of the natural affine struc-
ture of the fibres of Lagrange fibration in symplectic geometry; this affine
structure is the main ingredient of the proof of the Liouville theorem on the
invariant tori of integrable Hamiltonian systems.

The projective structure of the Legendre fibres is even better than the affine
structure of the Lagrange fibres. Indeed, a diffeomorphism of the base of a
Legendre fibration induces a well defined mapping of the fibres (since it acts
on the contact elements of the base).

A diffeomorphism of the base of a Lagrangian fibration can be (locally)
lifted to a fibred symplectomorphism of the total space, but this lifting is not
unique (this ambiguity implies some global annoyances).

According to the above theorem the Legendre singularities (the germs of
the triples L & E — B consisting of a Legendre embedding and of a Legendre
fibration) can be modelled by the Legendre submanifolds of a projectivized
cotangent bundle of any manifold, say — of the projective space. The

Legendre’ singularity is defined by its front, if it is a hypersurface (and they
usually are).

Now it is easy to deduce that all the Legendre singularities are (locally)
equivalent to singularities of Legendre transformations of smooth functions,
or of the dual hypersurfaces of smooth projective hypersurfaces or the
equidistants of smooth hypersurfaces (and so on).

A Legendre singularity is called simple, if all the neighbouring Legendre
singularities belong to a finite set of Legendre equivalence classes.
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A Legendre mapping is Legendre stable if all the neighbouring Legendre
mappings are equivalent to the given one. A similar definition for germs allows
a small shift of the origin of the germ: any neighbouring Legendre mapping
has a Legendre equivalent germ at a neighbouring point.

THEOREM. All the simple and stable analytic Legendre singularities are
classified by the simple Lie algebras of types A, D and E:

A, « A, « Ay « Ay « As « Ag « A, « Ag

N U
U

E, « E, « Eg

Namely, the corresponding fronts are C-diffeomorphic to the corresponding
discriminants (the sets of nonregular orbits of the corresponding Weyl groups).

Example. The Weyl group A, is the group generated by the reflections
of the space CH = {zeC**l:zp+ ...+ z, =0} in the diagonal mirrors
z; = z;. The orbits are the unordered p + l-tuples {zy, ..., 2.}, such that
Zo+ ... +z, =0.

The space of orbits is the space of polynomials

A W A S W

The irregular orbits correspond to polynomials having multiple roots.
For instance, the set of irregular orbits for A, is a semicubical parabola
in the plane formed by the polynomials

{22 4+ Mz + Xy = (24 0%(z—-20)} .
The discriminant for A; is the swallowtail surface

(2% + Mz% + Az 4+ Ay = (z+0)% ..}

THEOREM. The generic Legendre mappings L"— E?+t1 - Bn+l  of
Legendre manifolds of dimension n < 6 are simple and stable at all their
points (and hence are described by the preceding theorem).

The classification of the stable Legendre mappings of any dimension up
to Legendre equivalence is equivalent to the classification of families of func-
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tions up to ‘‘V-equivalence’’ (= fibred diffeomorphisms of the zero level
hypersurfaces).

It is also known that the set of topologically different singularities of
generic Legendre mappings remains finite for any finite 7 (Varchenko, Loo-
jenga). However this topological classification is unknown even for those small
values of # between 6 and 11, for which there exists an explicit classification
up to smooth Legendre equivalence (this classification is described in the last
chapter of volume 1 of the book [AGV]).

In the theory of propagation of waves one encounters, besides the usual
wave fronts, a Legendre singularity of higher dimension — its front is the
graph of the “‘multivalued time function’’, whose level sets are the momentary
fronts.

Let us consider the positions of a moving front in different moments of
time as a hypersurface in space-time. This hypersurface is called the big front.
The big front is a front of a Legendre mapping over space-time. The momen-
tary fronts are its sections by the isochrones (isochrones are the level sets of
the time function in space-time).

To study the perestroikas!) of the momentary wave fronts we need to
reduce the time function to a normal form in a neighbourhood of a singular
point of the big front by a diffeomorphism preserving the big front.

In the case when the big singularity is simple and stable, this can be done
very explicitly, using the technique of the invariant theory of Weyl groups (or
of Coxeter groups).

The main ingredient is the study of vector fields, tangent to the discrimi-
nant. Such vector fields form a module over the algebra of functions. Hence
the knowledge of few particular fields, tangent to the discriminants, permits
one to construct many diffeomorphisms preserving the discriminant. Using
these diffeomorphisms one can reduce the time function in a neighbourhood
of the origin of the space of orbits of a Weyl group to a linear normal form.
The corresponding linear function on the space of orbits is an invariant of
degree 2 (considered as a function on the space of orbits).

For instance, a generic function in a neighbourhood of the most singular
point A = 0 of the generalized swallowtail [A:37:x**!1 4+ Mxt-1+ .+ A,

= (x+1)?...vx] is reducible to the normal form =+X; by a swallowtail
preserving diffeomorphism.

1 . . . . .
‘ ) In Russian the word perestroika was always used in this mathematical sense, for
instance ‘‘Morse surgery’’ is ‘“Morse perestroika’’ in Russian. In past translations from the

1 $¢ 4 .
Rusman_, perestroika’’ of wave fronts was called ‘‘metamorphosis’’, but now I may use the
international word ‘‘perestroika’’.
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One may find in the literature the statement that the local perestroikas of
the wavefronts generated by the general Legendre mappings over space-time
and of the equidistants of the smooth hypersurfaces are the same. It seems
this has never been correctly proved. It is now known (Nay, Tchekanov) that
the corresponding statement for the caustic perestroikas is wrong. The fact that
the moving Lagrange manifold lies in a (moving) hypersurface of the cotangent
bundie space, which is quadratically convex along the fibres, implies some
topological restrictions on the local perestroikas of the caustics.

The contact geometry analogues of these results have not yet been for-
mulated (one of the variants deals with the Legendre submanifolds of a hyper-
surface in the projective cotangent fibration space, which is locally
quadratically convex in the sense of the projective structure of the fibres).

The local classification of generic Legendre singularities is the base of a
global theory of Legendre cobordisms and characteristic classes.

Let us consider the projectivized (or the spherized) cotangent bundle £ (M)
of a manifold M with boundary oM. A Legendre submanifold L of M, which
is transversal to OF, has a ‘‘Legendre boundary’’, which is an immersed
Legendre submanifold of E(0M). It is defined by ‘‘section and projection’’:
first we intersect L with the hypersurface OF, and then we project the intersec-
tion along the characteristics of 0F to the space of characteristics, which is
E(@©M). The projection has dimension dimZ — 1 and is a Legendre
submanifold of E(0OM).

This Legendre boundary construction gives birth to many cobordism
theories since we can consider oriented or non-oriented bases and immersed
Legendre manifolds, formed by cooriented or noncooriented contact elements
or by jets of functions on manifolds with boundary.

Example 1. The group of cobordism classes of (a) oriented, (b)
nonoriented Legendre submanifolds in the space of cooriented contact
elements of the plane is isomorphic to (a) the group of integers, Z, the
generator being an eight-shaped curve with 2 cusps at the top and at the bot-
tom; (b) to the trivial group.

Example 2. The cobordism of the oriented generator to zero shows that
this generator is the Legendre boundary of a Legendre Mobius band over a
halfplane M. This construction defines a Legendre embedding of a Klein bottle
in R3. (See [A2].)

For more details on the Legendre cobordisms and characteristic classes con-
sult the book [Va] by V.A. Vassilyev.
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Example 3 (M. Audin). The classes of nonoriented Legendre cobordisms
in the spaces of 1-jets of functions in the spaces R” form a skew-commutative
graded ring, which is isomorphic to the graded ring Z,[xs, xo, X11, ...] of
polynomials with coefficients in Z, and with arguments x, of odd degrees
k+2" -1,

In the oriented case the ring is isomorphic to the exterior algebra over Z
with generators of degrees 1,5,9,...,4n + 1,... mod torsion.

The proofs are based on the Eliashberg reduction of the problem to the
calculation of the homotogy groups of the Thom spectra of the tautological
bundles over the Lagrangian Grassmannians (the details are in the Eliashberg
paper [El]).

On the other side the classification of Legendre singularities generates a
complex, whose cells are singularity types and whose boundaries are defined
by the adjacency of the singularities. The initial parts of these complexes were
calculated by V.A. Vassilyev (see his book [Va]). The cohomology of these
complexes defines Legendre characteristic classes (the simplest of them is the
Maslov class). These classes can be generated also by the corresponding univer-
sal spaces (the Lagrangian Grassmannians U(n)/O(n)).

But the information on the singularities’ coexistence, compressed in the
Vassilyev complexes of singularities and of multisingularities is not reduced to
the calculation of the characteristic numbers in terms of the singularities.

Example. The number of A; points on a generic closed Legendre surface
immersed in J!'(M?2, R) is always even. The number of intersections of the
strata (A1A4,), (A1A44), (A2A44), (A1A46), (A1 A4,A4,) of the front are (mod 2)
characteristic numbers for the Legendre mappings.

The number of singularities of any given type on the Legendre boundary
is even. For the Legendre boundary of an oriented manifold the numbers of
singularities Eq, (or E; or Eg) counted with some sign convention, are equal
to zero.

For Legendre immersions in the space of 1-jets of functions, Vassilyev has
defined orientation rules, for which # As = 0 (the number of A; singularities
on a closed oriented Legendre 4-manifold is equal to zero), # A, = # Es,
# E; + 34# Ey = 0. The class A5 defines a cohomology class in the Vassilyev
complex, but it is not realizable by a Legendre immersion.

The topology of Legendre immersions and embeddings is far from being
settled.
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