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PROPOSITION 10. If I and J are equivalent, reduced, primitive ideals
of Op then

d(J,I)=d{,J)~-! (mod*n).

Proof. As I and J are in the same period we have J = pI(p €e K*) and
I=0J(ceK*). As I =p~-'J we have o = p~-!(mod*n), which proves
Proposition 10.

7. COMPARISON OF DISTANCES BETWEEN CORRESPONDING IDEALS
IN DIFFERENT ORDERS

Let C be a primitive class of the order Op,2 and let 8(C) be the image of
C by the mapping 6 defined in § 3. As an application of the concept of distance
described in §6, we explain how to define a mapping of the period of C into
the period of 6(C), which approximately preserves distance.

THEOREM 2. For D' = Df? let Ce Cp and 6(C) itsimage by the
surjective homomorphism ©:Cp — Cp.

(i) There exists a mapping T from the period of C into the period of
0(C) such that for I and I in the period of C we have, for a choice
of d modulo units,

d(, I') ’ 71)3/2 ’
(7.1) W <d(W,t) < 8f'D¥2d(I,T') .
(ii) When f = p (prime) there exists a mapping ¢ jfrom the period of
C into the period of 0(C) such that for I and I' in the period of C
we have, for a choice d modulo units,

d, I )
(7.2) < d(o(l),c(I") < 2Dp*d(,I') .
2Dp?
Proof. LetlI = a[l,¢](@>0)and I’ = a’'[1,d"](a’ > 0) be two equivalent,
b+ D’
reduced, primitive ideals of a class C of Op(D'=Df?) with ¢ = 5
a
b'+)yD )
and ¢ = -——2-— reduced. Let & € K* be such that I' =81, 6 > 0.
a

() If GCD(a, f) =1 weset I} = 1. If GCD(a, f) > 1, from the proof of
Lemma 2, we see that there exists an ideal I, = a,[1,$,] = pI in C with
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o =|x+¢y|, where x and y are integers such that a@; = | ax? + bxy
r__ h2
- (D ’ )yzl, GCD(ay, f) = 1, GCD(x,y) = 1,0<x< f, 0<y</f.
4a
b+ VD
As ¢ =——V_—is reduced, we have
2a
! D’ — b?
1<a<(yD, 1<b< D, 1<c<)D |c= y ,
a
so that & < /D', |p|=x+ oy < fF1+D) <2fYD,
and
(7.3) 1<a, <2/D f2.
Also ¢ >1, —1 < <0, so, as p|p| = a;/a, we have
7.4 — < p< .
(7.4) 2D p<f
b+ D’
By the way in which we have defined I, = [al, _1__2_1/:] , we have

GCD(a,, f) = 1. Appealing to the proof of Theorem 1 (i), we see that there

b, +1/D
exists an integer b, such that I} = [al,f ( 2 2V— )] .
. : : b, +|D
Similarly there exists an ideal I| = [al’, f ( 2 21/_)] such that I/ = p'I’

and

b, +1/D
2

with p’ satisfying (7.4). Now, by Theorem 1, J; = [al,

, [ , by+1/D
Ji = |a],

2
the Lagrange reduction process to J; and J/, we obtain reduced ideals J and
J’, and, by Proposition 7, we have J = aJ;, and J' = a’J], with (by (7.3))

1 1 1 1

< <a<2, < —<a'<2.
2/ D a 212/D a/

are ideals of 8(C) such that J/ = p’6p ~1J;. Applying

Thus we have J' = &J, where 8’ = a'p’dp ~'a! satisfies

W <8'<8f4D'3/28 .

Setting J = t(J) gives the required mapping and proves (7.1).
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(i) When f = p (prime) and p does not divide a, we set I, = 1. If p
divides a, we take for I the ideal a,[1, ¢;] following I in its period. In this
case, as pla, from p2D = b} + 4aa;, we see that p|b; and so, as
GCD(a,, by,a) = 1 we see that p does not divide ;. Then, by (2.12), we have

I, = pI with p = % ¢;. Now, by Proposition 5, ¢; = é%ﬁ is reduced,
so that 1 < b; <|/D’, and |

(7.5) l<a <yD,

giving

(7.6) 1<p< D .

The rest of the proof follows exactly as in the proof of (i) using (7.5)
(resp. (7.6)) in place of (7.3) (resp. (7.4)).

8. (GAUSS’S REDUCTION PROCESS

Definition 14. (Half-reduced) A representation {a, b} of an ideal 7 is said
to be half-reduced if

-b+ VD
o< Z2FVD

8.1
(8.1) 2le]

where ¢ = (D — b?) | 4a.
An ideal Iis called half-reduced if there exists a half-reduced representation
of I.

Clearly, if {a, b} is half-reduced, then b < |/D and { — a, b} is half-reduced.

LEMMA 7. Let I be a primitive ideal of Op. To each representation
{a,b} of 1 corresponds a unique integer q such that the g-neighbour
representation {a’,b’} is half-reduced. The integer b’ and the ideal

[ b +1/D
r=\a

are determined by 1. The value of q is

b+)/D

2 |a|

b

a
(8.2) q=—
|a]
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