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2. PICARD-FUCHS COMPUTATIONS

We will need an explicit formula for p(s, #) in some cases. Suppose that
X/S has relative dimension one. Suppose z € K[S] such that Q 35(S) = K|[S]dz
and suppose U is an affine open of X,s € U(S) and v € .Zx(U), such that
s*v = 0 and Q) (V) = _Zx(U)dx,sv. For u € Zx(U) we define d,u and 9,u
by

du = 0,udz + 9,udv

Clearly 9, is a lifting of 8 =:8/8z to a derivation of _Zx(U). For
© = udy,;sv € Qy,(U) we set 9,0 = d,udy,sv (the image of the Lie
derivative of udv with respect to 9, in QQ/S(U)). Since 8 generates < over
K[S] we can and will also make & act on Q},¢(U) using 9.

LEMMA 2.2.1. Suppose o = udx,sv € QQ/S(U) is of the second kind
and [w] is its class in Hp,(X/S). Then

dlw] = [0,0] .

Proof. The element udv is a lifting of wudy, 0 to Q;((U), and
d(udv) = du ndv = d,udz A dv. Since this is the image of dz ® 8, in Q% the
lemma follows. [

COROLLARY 2.2.2. Suppose Y, D;® w; € PF. Then
Z D;w; = dx,sw
for some w e Zx(U).

Suppose ¢ # s is an element of U(S) and Z = s U ¢. Let / denote the map
from K[S] into H,(U/S, Z) associated to the pair (s, ¢). For © € QL,((U)
let [@]z denote the class of w in Hp.(U/S, Z).

LEMMA 2.2.3. Suppose U,s and v are as above, ¢ U(S) and
t*v = 0. Suppose ® = udy,sv € Q;,S(U). Then d*[w]; equals
[0z + (Y 8/ 1(t* (85 ~'u)dr*v))

where i runs from 1 to k.

Proof. By shrinking S we may suppose that ¢*v is invertible. We want
to compute V[w];. First we must lift udy,s0 to section of Q;}Z(U).
Let y = f*(t*v). Then m = uydy-'v is such a lifting and it equals
udv — uwy ~'9,ydz. Then V[w], is the class of
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dn = 0,udzrndv — d(uwwy )Y ady = dzAB,udv + dz Ad(uvy -19,y) .
which is the image of
dZ ® (8z® + dX/S(qu-lazy)) € Q}g@ Q;(/s(U) .

Hence 9[w] is the class of 9,m + dx/s(uvy ~'9,y) in H.(U/S, Z). Since
(t* = s*)(uvy ~1'0,y) = t*ud(f*v) the lemma follows in the case k = 1. Since
92/ =[-8 the lemma follows in general by induction. [

COROLLARY 2.2.4. Suppose U,s,z and v are as above, t e X(S)
which meets U and t*v # 0. Suppose w,w’ and o' are elements
Wy,s. Let ® = udy,sv and o = u'dy,sv on U. Then we have:

(1) Suppose L=0QRQ -1 w e PF,w=udy;sv and 0,0 — '
= dy,sw, with we Zx(U). Then

nis, 1) = t*w — s*w + (¢*u)or*v .

(i) Suppose p=0’QR+0X w0 +1QRQw"” € PF and 03’0+ oo’
+ 0" =dysw with we Zy(U). Then

uis, 1) = t¥((w —s*w, (u’ + 20,u),d,u, u) - (1,x,,x°,3x,))
and where x, = 0t*v.

Proof. First shrink S so that s and ¢ satisfy the hypotheses of the lemma
and then apply it and the definition of u(s, ). [

Suppose g: X — A is a morphism over S from a curve to an Abelian
scheme. Suppose k4,5 is an isomorphism. If n = g*® where ® € w,4,5 we will
set W, = g*l,. This is independent of the choice of w. As an immediate
consequence of the previous corollary we obtain:

COROLLARY 2.2.5. Let U,z,s and v be as above. Set X(S)'
={te X(S):t meets U and t*v+0}. Then there exist maps

V=:V,,:Ty, > K(S)*
and
L=:L,, wx;s— K(X)*
such that L is K-linear and for t e X(S)" and o € g*¥wy,g,

Hols, ) = *(L(w) - V(?)) .
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