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2. Picard-Fuchs computations

We will need an explicit formula for pfo t) in some cases. Suppose that
X/S has relative dimension one. Suppose z e K[S] such that dl(S) K[S]dz
and suppose U is an affine open of X,s e U(S) and u e Jfx(U), such that
s*u - 0 and Q^/S(C7) X2x{U)dx/su. F°r u e we define dzu and dvu

by
du Qzudz + 9Vudv

Clearly dz is a lifting of 9 : 9/9z to a derivation of 22X(U). For
co udx/su e QX/S(U) we set 9zco 9zudx/sv (the image of the Lie
derivative of udu with respect to dz in QX/S(U)). Since 9 generates 2$ over
K[S] we can and will also make 2$ act on QX/S(U) using dz.

Lemma 2.2.1. Suppose co udx/su e QX/S(U) is of the second kind
and [co] is its class in HlDR(X/S). Then

9 [co] [9,co]

Proof. The element udu is a lifting of udx/su to Q^(C/), and
diudu) du a dv dzudzAdu. Since this is the image of dz ® 9zco in Qx the
lemma follows.

Corollary 2.2.2. Suppose £ A ® co, e PF. Then

S A dx/sw

for some w e J2X(U).

Suppose t ± s is an element of U(S) and Z s \j t. Let / denote the map
from iqS] into HlDR(U/S,Z) associated to the pair (s,t). For co 6 Qx/5(t/)
let [co]z denote the class of co in HlDR{U/S, Z).

Lemma 2.2.3. Suppose U,s and u are as above, te U(S) and
t*u 0. Suppose co udx/sv e Q^/5((7). Then 9^[co]z equals

[9*co]z + /(£ 9/-1(A(9j-/w)9^p))
where i runs from 1 to k.

Proof By shrinking S we may suppose that t*u is invertible. We want
to compute V[co]z. First we must lift udx/sv to section of Qlx Z(U).
Let y f*(t*u). Then i\ uydy~lu is such a lifting and it equals
udu - uuy ~ldzydz. Then V[co]z is the class of
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ch\ dzudzAdv - d(uuy~l) Ady dzAdzudv + dz a d(uuy ~ ldzy)

which is the image of

dz ® (8zra + dx/s(uuy-ldzy))e•

Hence 9[©] is the class of Qzg> + dX/s(.uuy~in H{DR{U/S,Z). Since

(t* - s*)(uuy~ldzy) t*ud(t*v) the lemma follows in the case k 1. Since

0o/ / ;ô the lemma follows in general by induction.

Corollary 2.2.4. Suppose U,s,z and v are as above, t e X(S)
which meets U and t*v ^ 0. Suppose co,co' and co" are elements

(ùX/s' Let co - udx/sV and co' u'dx/sv on U. Then we have:

(i) Suppose |i 0(x)co-l(x)co'e PF, co udx/sv and 0zco - co'

dx/sw, with w e Jfx(U). Then

Ijl(s, t) t*w - + (t*u)dt*u

(ii) Suppose ji 02®co + 0(x)co'+l(x)co"e PF and 02co + 0co'

+ co" dx/sw with w e Jfx(U). Then

|i(s, t) /*((w - s*w, (u' + 2dzu),dvu, u) • (\,xt,x2n§xt))

and where xt dt*u.

Proof. First shrink S so that s and t satisfy the hypotheses of the lemma

and then apply it and the definition of pfe /).

Suppose g:X->A is a morphism over S from a curve to an Abelian
scheme. Suppose ka/s is an isomorphism. If r| g*co where co e (x)A/s we will
set m This is independent of the choice of co. As an immediate

consequence of the previous corollary we obtain:

Corollary 2.2.5. Let U,z,s and v be as above. Set X(S)'
{t e X(S): t meets U and t*v^k 0}. Then there exist maps

V=:Vzy.Tu>v-K(Sy
and

L : Lz>v>s: oox/s K(X)4

such that L is K-linear and for t e X(S)' and co e £*00,4/5,

MM) t*(L(.
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