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294 V. CHARI AND A. PRESSLEY

5. R-MATRICES AND INTERTWINING OPERATORS

In this section we shall prove that, after a trivial twisting, the intertwining
operators between certain representations of Yangians provide rational
solutions of the quantum Yang-Baxter equation. Recall that, if V is any
representation of Y = Y(81,), then, for any a € C, we denote by V(a) its
pull-back by the automorphism t, of Y defined in Proposition 2.5.

PROPOSITION 5.1. Let V, W be irreducible finite-dimensional represen-
tations of Y with highest weight vectors Qy,Qyu andlet a, beC. Then:

(a) the tensor products V(a) ® W(b) and W(b) ® V(a) are irreducible
and isomorphic except for a finite set of values SV, W) of a— b,

(b) the unique intertwining operator
I(V,a; W, b): W(b) ® V(a) > V(a) ® W(b)

which maps Qu ® Qp to Quy® Qu is a rational function of a — b
with values in Hom (WX V, V&R W).

Proof. Part (a) follows immediately from Proposition 4.2 and
Corollary 4.7. For part (b), we need the following lemma.

LEMMA 5.2. Let V, W be representations of Y and let aeC.
(a) If V s irreducible, so is V(a).

(b) If I:V— W is an isomorphism of representations of Y, so is
I:V(a) > W(a).

Proof of lemma. Part (a) follows from the definition of V(a). For
part (b), we must show that / commutes with the action of x and J(x) on V(a)
and W(a), for all x € §[,. But this is clear, since the action of x is the same
as that on V and W, and that of J(x) is the same as that of J(x) + ax on V
and W.

Returning to the proof of Proposition 5.1, it follows from the lemma that
I(V, a; W, b) is a function of a — b, so it suffices to consider the case b = 0.
For any a € C which does not belong to the finite set S(V, W), there is a unique
isomorphism

IV,a; W,0)=1(a): W& V() = Vi) W

of representations of Y such that

(5.3) I(@) Quw®Qy) = Qy & Qp .
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Choose bases of V® W and W ® V and let {I,} be a basis of 81,; write /(a)
also for the matrix of I(a) with respect to these bases. Let A,, By be the
matrices of L, and J(J,) acting on W ® V(a); and let A; and B, refer
similarly to V(a) ® W. Then, I(a) commutes with the action of Y if and only
if I(a) satisfies the following system of homogeneous linear equations:

AyI(a) = I(@)A;, ByI(a)=1(a)B;, forall A .

We know that, if a¢S(V, W), these equations have a unique solution
satisfying equation (5.3). By elementary linear algebra, the solution is a
rational function of the entries of the matrices A,, A;, By, B, . Since 4,, A4,
are independent of ¢ and B,, B, are linear in a, the result follows.

Definition 5.4. Let V be a finite-dimensional irreducible representation of
Y. Then, the R-matrix associated to V is the function R(a — b) with values in
End(V® V) given by

R(a-b)=1(V,a;V, b)o ,

where 6 e End (V' V) is the switch of the two factors.

THEOREM 5.5. Let V be a finite-dimensional irreducible representation
of Y. Then the R-matrix associated to V is a rational solution of the
quantum Yang-Baxter equation:

(5.6) RZ2(@—-DRB(@a—c)RB(b—c) = R¥(bD—-c)RB(a—c)R2(@a-D>) .

Proof. We note first some simple commutation relations between the
intertwining operator I(a—b) = I(V, a; V, b) and the switch map o. For
example, we have

c2IB(@-c)c?2 =1%(a—-o).
by an easy computation. Similarly,
c?6BIB(b-c)cBc2 =12(b-c) .
Hence,
R*(a—=b)RB(a—c)RB(b—c) = I'*(a—b)c 2IB(a—c)o B I3 (b—c)c 2
=I%(@-b)I3(@a—-c)c?cB3I3(h—c)o B
= I'*(a~-b)IP(a—c)'2(b-c)o 2613623 .
Similarly,

R2(b—-c)RB(a~c)R'*(a—b) = IB(b—)[2(a~c)?(a—b)oBoBs2 .
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Hence, in view of the relation

012013623 — 023013012
in the symmetric group on three letters, the equation to be proved is
(5.7) I2(a@—-b) [P (a—c)?(b—c) =IP(b-c)I?(a—c) > (a-D) .
Note that both sides of equation (5.7) define intertwining operators

Vo) ®@ V(b)) ® Via) = Via) ® V(D) ® V()

which fix the tensor product of the highest weight vectors in V. Hence,
regarded as functions on C? with values in End(V® VQ V), they agree on
the complement of the set S of (a, b, ¢) € C3 where V(c) ® V(b) ® V(a) or
Via) ® V(b) ® V(c) is reducible. It follows from part (a) of Proposition 5.1
that S intersects each complex line parallel to one of the axes in C3 in at most
finitely many points. It is easy to see that the complement of such a set is
Zariski dense in C3. Since the two sides of equation (5.7) are rational
functions which agree on a Zariski dense set, they are equal.

Remark. We have used the following simple fact about intertwining
operators. Let U, V and W be representations of a Yangian Y(3[,) and let
I:URX® V- V& U be an intertwining operator. Then

I22UQVRIW-TRUR W
and
IBWRURSIV-WRKVRU

are intertwining operators. While this is obvious enough, it should be noted
that

IB:UQWRVVR WR U
is not an intertwining operator in general.

We conclude this general discussion by showing that, up to a sign change
in the parameter, the R-matrix R(u) we have associated to a representation of
Y is the same as that constructed using the ‘‘universal R-matrix’’ (see
Theorem 3 of [4]). Set

Ru) = R(—u) .
Then, by Theorem 4 of [4], it suffices to prove that
(5.8) P (a, b)R(b—a) = R(b—a)P;] (a, b)
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where

1
P (e b) = (p®p) (VL) +ah) ® 1+ 1@ (J(h) + bh) + 5 L ®1,Q1),

p: Y — End(V) is the action of Y on V and {1} is an orthonormal basis of
8l,. In terms of intertwining operators, equation (5.8) asserts that

P (a, b)I(a—b) = I(a—b)cP, (a, b)o .
But it is easy to see that
oP; (a, b)o = P, (b, a) .
Hence, we must prove that
P (a, b)I(a—b) = I(a—Db)P; (b, a) .
But this is simply the statement that
Ia—b): V(D) ® V(a) = V(a) ® V(D)

commutes with the action of J(/y).

We shall now apply these results to compute the R-matrices associated to
every finite-dimensional irreducible representation of Y. By Theorem 4.11,
every such representation is of the form

V= le(al) X I//77/( (ak)'
The intertwining operator
I(a—b): V(b)) ® V(a) = V(a) ® V(b)

can be computed as the product of k? intertwining operators of the form
I(V,,a;V,,b), each of which effects an interchange of nearest neighbours.

Since such an operator commutes, in particular, with the action of §[,, it can
be written in the form

min{m, n}
(5.9) I(I/maa;Vn’b): Z Cij+n—2js
Jj=0
where
Pm+n~2j: Vn ® Vm - V/n ® Vn

is the projection onto the irreducible component of

— min{m, n}
Vm® Vn= ®j=0 Vm+n—2j
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of type Vi, 1n-2;. We have ¢y = 1 since I(V,,, a; V,, b) preserves the tensor
products of the highest weight vectors.

To compute I(V,,a; Vy,, b), let Q;,j = 0,1, ..., min{m, n}, be a highest
weight vector in V,® V, of weight m + n — 2j; then, the vector Q;
obtained by switching the order of the factors in Q; is a highest weight vector
in V,, ® V, of the same weight, and we have

IVu,a; Ve, b) (Q) = Q7.

Further, it is easy to see that, for j > 0,(x+* ® 1).Q; is an §[,-highest weight
vector of weight m + n — 2j + 2; it is non-zero, since otherwise Q; would be
annihilated by x* ® 1 and by 1 ® x*, contracting the assumption j > 0.
Hence, we may assume that

(X+ ® I)Qj = Qj—-l
for j > 0. Switching the order of the factors, we have

x+*®1).Q/ = - Q!

j=1-
By Proposition 4.2 (and its proof), Q; is a Y-highest weight vector in
V(b)) ® Vila) if

1
b—azi(m+n)~j+l.

It follows from the formula for the co-multiplication in Definition 1.1 that, in
the representation V,(b) & V,.(a),

1
J(x*).Q; = (b—a—i(m+n)+j—l) x*®1).Q;,
and that in the representation V,(a) ® V,(b),
1
Jx*+).Q = (a—b—i(m+n)+j—1) x*®1).Q;.

The equation
I(Vmaa; Vna b) (J(x+)QJ) = J(x+)(I(Vm9 a, Vnab)Qj)

Now gives 1
a—b+§(m+n)—j+1

1
a—b—E(m+n)~j+1
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It follows that

1 .
- a—-b+-(m+n —1
bi=1 2

I1 pP;.

=0 1 .
a—b—i(m+n)+z

min{m, n
(5.100 IV, a; Vi b)= %
-0

We summarize our results in the following theorem.

THEOREM 5.11. The R-matrix associated to the representation

V = le(al) ® e ® mG(ak)

of Y s given by

kK
R(a—b) = ( H I(Vmi,a + a;; ij,b + aj))G )
ij=1
where the intertwining operators are given by equation (5.10) and ¢ is the
switch map. The order of the factors in the product is such that the (i, j)-term
appears to the left of the (i’,j')-term iff

i>i" or i=1 and j<]j'.

6. CONCLUDING REMARKS

Since we have discussed only the Yangian associated to 81, in this paper,
it may be worth-while to indicate the extent to which the results above can be
generalized to the Yangian Y(a) associated to an arbitrary finite-dimensional
complex simple Lie algebra a.

The definition of Y(a) is precisely as in (1.1), except of course that {7, }
should be an orthonormal basis of a with respect to some invariant inner
product. The formulae

) =x, w(K)=JK +ax,

for x € a, again define a one-parameter group of Hopf algebra automor-
phisms of Y(a), and the relation, discussed in section 35, between solutions of
the quantum Yang-Baxter equation and intertwining operators between tensor
products of representations of Y(a), which follows from the existence of the
T4, 1S also valid in the general case.
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