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L'Enseignement Mathématique, t. 36 (1990), p. 393-427

MANIN'S PROOF OF THE MORDELL CONJECTURE

OVER FUNCTION FIELDS

by Robert F. Coleman

In the process of translating Manin's proof of Mordell's conjecture over

function fields into modern language we found a gap. The arguments in [M]
do not suffice to prove Manin's Theorem of the Kernel. We were able to fill
this gap by using those arguments to prove a weaker theorem (Theorem 1.4.3

below) and combining this with the function field analogue of Siegel's

Theorem and Manin's ideas to complete the proof of Function Field Mordell.
More recently, Chai [C] (see also the Appendix, below) has applied Deligne's
Theorem on the semi-simplicity of the action of the monodromy group to
deduce Manin's Theorem of the Kernel as reformulated below from the weaker
theorem mentioned above. I believe that all this is testimony to the power and

depth of Manin's intuition. We were also able to make Manin's analytic proof
completely algebraic. Manin has kindly verified that the corrections discussed

herein are necessary and apt (see letter to Izvestia...)
In light of the above and because of the ground braking nature of the work

we believe that Manin's paper "Rational Points of Algebraic Curves over
Function Fields" merits a clear modern treatment. We attempt to give one
below.

I. The Theorem of the Kernel

0. Review of connections and hypercohomology

(See also [D-l].) Let S be smooth connected scheme over a ring K.
Let denote the structure sheaf of S, Qps the sheaf of p-forms on S

over K and d the exterior derivation from to Q£ +1. Let be a coherent
sheaf on S. A connection on Sf over K is a ^-linear homomorphism
V : -> Qls (g> S/y satisfying the Leibnitz rule

We are indebted to Arthur Ogus for many helpful and stimulating discussions.
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V(fs) df g s + /V (s)

for / a local section of and 5" a local section of S/. We will also say that
(5^, V) is a connection on S. There is a W-linear map which we also denote

by V from Q,ps g g/Q,ps+1 g 5/ characterized by

V (co gs) d(ù g s + - l)^co g V (s)

for co a local section of and s a local section of We say that (5^ V)
is integrable if the map V o V : _9^^ Q2S g 5^ is zero. In this case

g g/*g jg...
is a complex. We let Hl(Sg V) denote the z-th hypercohomology group of
this complex. When K is a field of characteristic zero, integrability also implies
that g/ is locally free.

If (H, V//) and (G, VG) are two connections on S then there are natural
connections V# (x) VG on H g G and Vh,g on Horn^ (f/, G) characterized

by the formulas

VH g VG(h g g) VH(h) g g + h g X7G(g)

VH,G(r)(h) VG(r(h)) - r(VH(h))

for local sections h and g of H and G and a local section r of Horn^ {H, G).
V /O v v

We let H Hom(//, ^#5) and VH VH> j?s, which is a connection on H. It
V

is easy to see that VG g VH equals V//jG under the natural identification of

HornG) with G g H. We will need the following, easy to check,
lemma.

Lemma 1.0.1. Suppose r e Qpsg G) Çlpsg Hom^dH, G).
Then

yhAr)iß) VG(r(s)) + (-l)^(V^))
Since we will use it frequently in the following we will record here the

Cech definition of hypercohomology. (See also [H-l, Chapter 1 §3].) Suppose

(gZ',d) is a bounded below complex of Abelian sheaves on a topological
space S. Then we define the hypercohomology of SZas follows: First let

V
be an ordered open cover of S. We have the Cech complexes

cm yj)©
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where the sum runs over all intersections U of i + 1 distinct elements of ©L

Let 8: Cl{^,yj) -+ C'+1(^,5^) be the Cech co-boundary. We also have

boundaries d: CG'"(^, 5^'+l).
Now let

Cn(^,V) © G^©//, :/«)

where the sum runs over p + q n. For c e Cn(ff, Sf we let cp'q denote

its p, q-th component. The hyper-coboundary

d:Cn(^,J^') -> Cn + l(f/,V)
is defined as follows: For c e we set

(dc)p'q dcp~1^ + (-1y^bcP'P-1

Then the hypercohomology of 5^with respect to if, H'{S, 3^ if), is defined

to be Ker(8)/Image(0) and H'OS, S/') is defined to be an appropriate limit
of these groups over all ordered covers. In particular, if S is a scheme, Sf
is a complex of coherent sheaves and ff is an affine open cover, then

H"(S, V) is naturally isomorphic to H (S, ff). If in addition S is affine
H \S,V)

1. Extensions of connections

Let S be smooth connected scheme over a field K of characteristic zero.
Suppose (.H, VH) and (G, VG) are integrable connections on S. The set of
isomorphism classes of integrable extensions of (H, VH) by {G, VG) forms a

group under Baer sum which we will call Ext(//, G).

Proposition 1.1.1. Ext(H,G) Hl(G(g)H, VG® V©.

Proof. Since VH is integrable, H is locally free. Let if be an ordered
affine open cover of S such that H(U) is a free (G)-module for each
U e if Suppose we have an extension

0 -> (G, VG) - (E, V) - (H, V© -> 0

of connections. Let U e if. Since H(U) is free, there exists an (G)-
module section sa:H(U) E(U). Now let hv V&Su - svo X7H. We claim
that hu is an ff (G)-module homomorphism from H(U) into Qls (x) G(G),
i.e. an element of Hom^(if, Cf® G)(G). Indeed, for / e ff(G) and
u e //(G),



:
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M/y) VM/u» - Su(VH(ft>)) V(/sv(y)) - Su(df ®v + fVHu)
— df (x) — /V(sG(i>)) — (fi?/ ®sG(y) + /?£/( V//y)) fhu(v)

Let S(jty Su - sv e Hom^(//, G)(Gn F We claim that ({hu}, {^K}) is

a hyper one-cocycle for the complex (Qj® Hom^(i/, G), V#,c). First it is

clear that {s^k} is a one-cocycle for the sheaf Horn ^> (H3G). Second

^G ° Su, V — Su, y ° V// V o (sv — Sy) — (Su ~ Sy) ° V// hv ~ hy

Finally, since

\J oXJ o Su — V°5(/0 V// + Vc h u — h u ° V# + VG ° /zG — Vh, g(^l) >

(using Lemma 1.0.1) V is integrable iff VHjG(/z) 0.

Moreover, suppose {s^} is another collection of sections

Su:H(U) -* E(U), h'v V'osj - s^o V

and 5^ y ~ s'u s'K. Then rG 5G - sö £ Horn-j?(H, G) and

h'u h + VorG—rGoV// h 4- VGorG — rGoV//=/z + V#>G(rG)

And so ({/zc/Msc/, k}) - ({^G}, {sGj j/}) is the hyper-boundary of {oy}. Thus

we get a natural map from

Ext (if, into if^Hom^ff, G), V^G) Hl(G®H, VG® V//)

It is easy to see that this map is a homomorphism.
We can make a map back as follows. Given a hyper-cocycle ({At/}»{5^K})

for the complex (Q ^ (x) Horn/v (if, G), Vh,g), let E be the sheaf determined

by the condition that E(U) - G(U)@H(U) with gluing data

(w,u) -> (W + Su,y,V)

on U n V. We then put a connection V on F by setting

V(w, u) (VGw + hu(p)-> V//f)

for local sections w and u of G and H on U. One can check easily that E is

an extension of if by G and that this construction gives the inverse to the map
above.

Corollary 1.1.2. Ext(H, j^s) is a K vector space and hence is

uniquely divisible.

Corollary 1.1.3. Suppose S is affine and S' is a non-empty affine
open of S. Then Ext (El, Jfs) injects into Ext (H® JfSr

> ~^s') •
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We note that taking duals yields an isomorphism between Ext (G, EE) and

Ext(EE, G). Also, upon identifying (G) with G, VG VG.

Lemma 1.1.4. The diagram

Ext(EE,G) - EEKG0EE, Vg®Vh)

i 1

Ext (G, EE) - Hl(H® G, VH® VG)

anti-commutes, where the horizontal arrows are the isomorphisms given by the

proposition and the right vertical arrow is the evident one.

Proof. Since the assertion is local, we may suppose EE and G are free.

Suppose (E, V) is an extension of EE by G and s:H -> E is a section. Then
h Vos - so vH is an element of Hom^> (H, G) which represents the

image of the isomorphism class of E in

EE1 (Horn (EE, G), VH>G) Hl{G®H, VG®VH)
V V

The image k of h in Hom^ (G, Qs ® EE) is determined by

k(w)(v) w{h(v)) w((V os - s-"- V//)(L))

where u is a section of EE and w is a section of G.

Now (£, V) is an extension of G by EE and the homomorphism t
determined by

t(w)(e) w(e - so%(e))

is a section, where 7t : E EE is the projection, e is a section of E and w is a
section of G. Hence, g Vot - to V£ is an element of Horn^ (G, Qls ® EE)

which represents the image of the isomorphism class of £ in

//'(Horn(Ö,£),

Now

g(w)(n) (Vo(-(o Vc)(w)(e)

where e 5(n) and

V /(H')(n) rf(w(e-j(7t(e))-w(V(e)-5(n(V(e))))

- w(VOJ(D) -A:(w)(n)
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since n (s(u)) u and nV(e) VH(n(e))- The lemma now follows from

(to VS)(w)(e) VUw)(e-s(71(e)) 0

Suppose IF is an \ submodule of H. We let [W] denote the smallest
subconnection of H containing W.

2. The Gauss-Manin connection

Here we will recall the definition and some basic properties of the Gauss-

Manin connection which we will need in this paper. For more details see [K-O].
If J^7' is a complex, will denote the complex obtained from S/' by
setting SZl{k) S/iJvk. For any scheme Y over K will let K[Y] denote

r(^V).
Suppose S is a smooth connected affine scheme over K. Suppose f:X-+S

is a smooth morphism, Z is a closed subscheme of X, smooth over S. Suppose
T is either Spec(W) or S. Then we define the subcomplex Q.X/T)Z of kl'x/T by
the exactness of the sequence.

0 —> Q>x/T,Z ^X/T ^Z/T ^ •

When T Spec(W) we drop it from the notation. It follows that
Q,lx/S z Q'x/s f°r ' > dim5Z. Note that Q°x>z Q°X/s,z *s the sheaf of ideals

of Z on X. We define HlDR(X/S, Z) to be the i-th hypercohomology group of
the complex QX/S}Z. We set HlDR(X/S) HlDR{X/S, 0). If X is affine, then

HlDR(X/S,Z) is the /-th cohomology group of the complex of ^T[*S] modules

T(QX/S>Z). If X is affine, K has characteristic zero and U is a dense open
subscheme of X then the natural map from HlDR{X/S, Z) to HlDR(U/S, Un Z)
is an injection.

From the last short exact sequence with T Sf we obtain a long exact

sequence

(2.1) - H'DR\Z/S)-H'dr(X/S, Z) - -
The Gauss-Manin connection V: H'DR(X/S, Z) -> Q5 @ H'DR{X/S, Z) is

the boundary map in the long exact sequence obtained by taking hyper-

cohomology of the short exact sequence of complexes:

(2.2) 0 — /*GS (x) klx/s z(— 1) — klx/s>z//*GS 0 Qx(-2) —* OX/E,Z ^

(which is exact because X and Z are smooth over S). It is an integrable
connection. If K has characteristic zero and / is surjective and has

geometrically connected fibers, then H°DR(X/S) iT[S] and the Gauss-Manin
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connection is the trivial connection on this module. Moreover, it is easy to

show that the sequence (2.1) is horizontal with respect to the respective Gauss-

Manin connections.

Suppose now that S is an affine curve over K and Z 0. Then the short

exact sequence (2.2) becomes

0 - f*Q's(X)&x/s(-!)üx/s &X/S -* 0 •

Taking cohomology of this sequence yields the Leray long exact sequence

(2.3) - H'dr(X/S) H'm{X/S) - - T

3. Sections of a family and extensions of connections

Suppose now S is a smooth connected affine curve over a field K of
characteristic zero and / : X -> S is a smooth proper morphism of schemes over

K, with geometrically connected fibers. These assumptions will be in force

throughout the remainder of this paper. Suppose Z is a closed subscheme of
X finite over S. Suppose the normalization n : Z -> Z of Z is smooth over S.

After repeated blowing ups at closed points we find a scheme m:X' X,
which contains Z and is such that the restriction of m to Z is n. Let X
equal the complement in X' of the singular locus of X'/S. This locus is a closed
subscheme of X' disjoint from Z. The long exact sequence 2.1 becomes

(3.1) 0 - K[S] -+ K[Z] - HlDR{Z/S, Z) - HlDR{X/S) 0

Let H denote the pullback of HxDR(X/S, Z) by means of the horizontal mono-
morphism from HlDR(X/S) into HlDR(X/S). We claim that H is independent
of the choice of W Indeed, there exists a non-empty affine open subscheme S'
of 5 such that the map from X xsS' to X' : X x sS' is an isomorphism.
If Z' ZxsS\ then Z' is smooth over S' and it is easy to see that
H (x) K[S'] HlDR(X7S', Z'). Hence H is an extension of the connection
H1Dr(X'/S',Z') on S' to a connection on S. Since such an extension is unique
if it exists, it follows that H is independent of the choice of X and so we set

Z) H. We obtain from the previous exact sequence, a natural
exact sequence

0 ->• AT[S] K[Z]-+HlDR(X/S,Z)-+ 0

For a section 5 of X/S,wewill also use 5 to denote the induced reduced
closed subscheme s(S) of X when convenient. Now suppose s and t are two
distinct sections of X/S. Let Z s u t.ThenZ, the normalization of Z, is
just two disjoint copies of S and so is étale over S. (The sections 5 and t
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induce maps from S to Z which we denote by the same names.) The map
t* - s* :K[Z] is horizontal, surjective and its kernel is the image
of AT[S] under the map in (3.1). Hence we obtain a horizontal exact sequence

0 - K[S] -* H]dr(X/S, Z) - H\jr(X/S) - 0

and so an extension of HlDR(X/S) by the trivial connection. We let E(s, t)
denote this extension if s^t and E(s, s) denote the trivial extension of
H'DR(X/S) by K[S], We call the class of E(s, t) in Ext (H'dr(X/S ),K[S])
M(s, t)

Proposition 1.3.1. Suppose r,s,t are sections of X/S. Then

M(r, t) M(r, s) + M(s, t)

In particular, M{r,s) -M{s,r).
Proof. If r, s and t are not distinct the proposition is obvious from the

definitions. Therefore suppose that r, s and t are distinct. If T is a subset of
{r, s, t) let Zj \J ueTu. Either by replacing X by X or by shrinking S and

using Corollary 1.1.3 we may assume that Z{r>SJ} is étale over S. Let
denote the complex Cl'X/s,zT' We set H{T) HlDR{X/S, ZT). Then from the

exact sequence of complexes

0 ^{r,sxtf ^{r,s} <8> ^{s,t) ^ s} 0

(where the first map is the diagonal and the last is the difference) we obtain

an exact sequence

0 -> H(r, s, t) -» H{r, s) © H(sy t) H{s)

moreover, H(s) HlDR(X/S) and the last map is the difference of the maps

from H(r,s) and from H(s,t) to Hlm(X/S) (and is, in particular, a

surjection).
Next from the exact sequence of complexes

where 5/ is the complex (W[S] ->0->...) we

obtain an exact sequence

0 K[S] -> H(r, s, t) H{r, t) 0

Moreover the first map is the composition of the map from K[Z{r>s t]\ into

H(r,s,t) and the map h from K[S] into K[Z{r>s>(}] characterized by

r*h(f) t*h(f) 0 and t*h(f) /. It follows from this that H(r, t) is the
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Baer sum of H(rfs) and H(s,t). Since all the maps discussed above are

horizontal this statement is true on the level of connections as well. This proves
the proposition.

Suppose X' is a smooth scheme over S and g:X' X is an S-morphism.
Then the natural map g* : HlDR(X/S) HlDR(X/S) induces a natural map
^*:Ext(//^(^V5),^[^])->Ext(//^(X/5),^CT). By the naturality of all

our constructions we have:

Proposition 1.3.2. Suppose X7S has geometrically connected fibers
and s and t are two sections of X7S. Then

M(gos, got) g*M(s, t)

Suppose X0 is a smooth connected scheme over K and X S x KX0. Then

dx/s) K[S] 0 (Qx0/k> dx0/x)

and so in particular,

H'dr{X/S) Ä-[S] ® H"dr{X0/K)

and the Gauss-Manin connection

X:HlDR(X/S)

is d,id).If H HlDR(X/S),itfollows from this that

ExtCtf^fS]) HUH, V) s Horn

Explicitly, this last isomorphism can be described as follows:

if he Hom(//, 0
then hmod VHgoesto the map (me(x)co)modcfW[S]).

Proposition 1.3.3. Suppose X(l is a smooth connected scheme
over K and XSxkXc, Suppose u and u are two morphisms
from S to X0 and s(id,u)andt (id,v). Then M(s,t) is
v* - u* as an element of UomK(H\w(X0/K), H\m(S/K)).

Proof. We may suppose that snt=0. Let Z s\jt. Suppose
h HDR(X/S)—> HDR(X/S,Z)isa section. Let ({oiy}, {fu, v\) be a one-hyper-

cocycle for (Q'Xll/K,dXij/K) and [co] the image the class of 1 (x) ({couM/^})
in H)ir(X/S). Then V[co] =0. We wish to compute V/i([co]) - A(V[a>])

V/z([co]). We will abuse notation and identify co^ with 1 <g) (ov in Qlx(U)
an<i fu,vwith 1 (x) fuyin .Xx((j n V). Let co denote the image of co^ in

Then /i([co]) is the class of



402 R. F. COLEMAN

({©£/ - dx/sgu} AfU, V ~ (gu ~ £k)})

for some one-chain {g<y} with coefficients in j@x such that

s*fu, v — u*fUjV s*(gu- gy) and t*fu>v= u*fu>v= t*{gv- gv)

Let y\y (ùu - dgv. Now

s*t\u - s*r|K s*dfUi v ~ s*d{gu - gv) 0

by the conditions that must satisfy and the fact that ({cou)Afu,v}) is a

hypercocycle. Similarly, t*r\u - t*r\v 0. Let t\s and ip be the the elements of
Qls determined by the cocycles {s*^} and {t*^} respectively.

Now to compute V/z([co]) we must lift cbu - dX/sgu to a section of QX)Z.
Let es>u and et>u be elements of j0x(JJ) such that s*eSj y lt*efry 0,

t*etjU 1 and s*et>u 0. These elements exist since Z is étale over S. Then

rit/ - (eSiUT}s + Ct,uT\t) is such a lifting. To compute V/z([co]) we must take the

hyper-coboundary of ({t^ - (es>uv\s + ettUi\t)}, {fu, v ~ (gu ~ gv)})- It is

({r\s ® dX/ses> u + x\t (x) dx/set> u) * {h* ® {es, u ~ es, v) + h/ ® ißt, u ~ £t, v)} > 0)

The class of this hypercocycle is the image of

T|t— t\s6in Q5 <g) HlDR(X/S,

(recall that we've determined a map of ^[S] into Z)). Hence

VA([©]) n, -
The proposition now follows from the fact that

({•ns + ö?5*gt/},{5*gt/-5*gK}) W*({cOy},

and

((ri, + dt*gu),{t*gu - t*gy}) y*({co

Corollary 1.3.4. If, in the above, u and v are constant, then

M{s, t) 0.

4. Abelian schemes

Suppose now that A is an Abelian scheme over S. Let m\A xsA Abt
the addition law and e the zero section. For s, t e A (S), let M(s) M(e, s) and

s + t m(s, t).

Theorem 1.4.1. The map M from A(S) to Ext(HlDR(A/S),K[S])
is a homomorphism.
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Proof. Let s and t be elements of A(S'). Define the map g:A A by

g mo(idjof)(g(x) x+ t(f(x))). Then g*:HlDR(A/S) HlDR(A/S) is

the identity so that g*M(e, s) M(e, s) on the one hand and

g*M(e,s) M(t,s + t) by Proposition 1.3.2 on the other. Hence,

M(s) + M(t) M(e, s) + M(e, t) M(t 5 + /) + M(e, t) M{e, s + t)

by Proposition 1.3.1.

Let (B, t) denote the K(S)/K trace of AK{S) (see [L-AV]). In particular, B

is an Abelian scheme over K and t:B x spec(i^T(5)) AK{S) is a homomor-
phism. Since K has characteristic zero t is a closed immersion. Philosophically,
B is the largest constant Abelian subscheme of AK{S) defined over over K. The

morphism x extends uniquely to an S-morphism t:BxkS~*A. It follows
that B(K) maps naturally into A (S). We call the elements s of A (S) such that
ns is in the image of B(K), the constant sections of A/S.

Proposition 1.4.2. The kernel of M contains all constant sections

of A/S.

Proof. Let 5 be a constant section of A/S. Then there exists a positive
integer n such that ns xo(Yx id) where t e B(K). Hence it follows from
the above theorem, Proposition 1.3.2 and Proposition 1.3.4 that
nM(s) - M{ns) M(f{t x id)) x*M(t x id) 0. Since

is uniquely divisible, by Corollary 1.1.2, the proposition follows.

We wish to prove the conserve of this proposition. I.e. we wish to prove:

Theorem 1.4.3. The kernel of M is precisely the group of all constant
sections of A/S.

We will give two proofs of this result. The first is Algebraic. The second
is analytic and is essentially a reformulation of Manin's proof based on
remarks by Katz [K2] in a letter to Ogus.

5. The algebraic proof

a. Differentials with logarithmic singularities

(See [K] §1.0). Suppose A" is a smooth scheme over a scheme T and Z
is a hypersurface in X whose irreducible components are smooth over T and
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cross normally relative to T. Let W X — Z and Z the disjoint union of the
irreducible components of Z. Let (Q^/r(Log(Z)), d) denote the complex of
differentials on X/T with logarithmic singularities along Z. (When T K, we
drop T from the notation.) When J7has characteristic zero, which we will now
assume, the z-th hypercohomology group of this complex is naturally
isomorphic to HlDR(W/T). We have a natural short exact sequence of
complexes

0 Çïx/T ^x/r(Xog;(Z)) — Q Z/T( ~~ 1) 0

From which, upon taking cohomology, we obtain the long exact sequence:

(5.1) 0 - HXDR{X/T)-HXDR(W/T)--
- H2DR(W/T) -» H2DR(Z/T)

In addition, we have a short exact sequence of complexes

0 Qls <g> Q^/s(Log(Z))(- 1) -* Q*(Log - Q^/s(Log(Z)) - 0

The boundary maps in the long exact sequence of hypercohomology obtained

from this short exact sequence are the Gauss-Manin connections

X :HlDR(W/S) -> Qls (x) HlDR{W/S). Moreover the long exact sequence (5.1) is

horizontal with respect to all the Gauss-Manin connections.

If D is any divisor on X, let r\ T(D) denote the cohomology class of D in
H2dr(X/T). Recall ([H-DR; 7.7]), if Sê is an ordered affine open cover of C
and {fu} is a Cech one-cochain with with coefficients in j0a with respect

to Sê such that the divisor of fv is the restriction of D to U, then rir(D) is

the cohomology class represented by the hyper one-cocycle

(0,{dC/r'Log(fUtv}},0)f where fu>v fv/fv(U< V). Suppose now that Tis
affine. Then H°DR(Z/T) is naturally isomorphic to the group of divisors on X
supported on Z with coefficients in K[T\.

Lemma 1.5.1. Suppose D is a divisor on X supported on Z, then

the image of D in H2DR(X/T) via the appropriate map in (5.1) is equal
to t\t(D).

Proof. This is essentially Proposition 7.6 of [H]. We carry out the proof
in order to ''straighten out" the sign.

Let Sf be an affine open cover of X and {fu} is a Cech one-chain with
coefficients in Jfx with respect to such that the divisor of fa Is the

restriction of D to U. Then, dLog(fu) e Qlx/r(Log(Z))(U) and

Res(dLog(/c/)) is the image of the image of D in H°DR(Z/T) It
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follows that the image of D in H2DR(X/T) is the class of the hyper-

coboundary of ({<iLog(/<y)}, 0) which is r|r(D) by definition.

By a properly semi-stable curve over S, we mean a curve over S such that

the irreducible components of the closed fibers are smooth and cross normally.

(The irreducible components do not have to be smooth if the curve is only semi-

stable.)

Corollary 1.5.2. Suppose R is a smooth connected curve over afield
K and X is a properly semi-stable curve over R smooth over K.

Suppose U is a non-empty open subset of R and Y =» R - U. Then the

kernel of the natural map from H2DR(X) into H2DR(XV) is generated by

{r|(T>)} where D runs over the irreducible components of XY.

Proof. This follows from the lemma and the exact sequence (5.1), since

the closed fibers of C/T are unions of smooth hypersurfaces of C which cross

normally.

Lemma 1.5.3. With notation as in the above corollary, if R is affine
and X is smooth over R then the map from H2DR{X) H2DR(XV) is an

injection.

Proof. For a closed point x of R, let Xx denote the fiber above x. Since

all the fibers of X over S are smooth, it follow from the corollary that the
the kernel of the map H2DR(X) H2DR(Xu) is generated by |r|(Av)} where x
runs over the closed points of Y. Now r\ (Xx) is the pull-back of
rj(x) e H2dr(R). As this latter group is zero, this proves the lemma.

b. End of algebraic proof

First by using the functoriality of M, Proposition 1.3.2, and the fact that
every Abelian variety over S is the quotient of a Jacobian over S we may
assume that A is the Jacobian of a smooth proper curve C over S. By
Proposition 1.1.1 and the long exact sequence (2.3), Ext(/F^(C/S,)V,^T[5])
maps naturally into H2DR(C). Moreover, since C is a proper smooth
connected curve over S,HlDR(C/S) is canonically isomorphic to HlDR(C/S)
The fact we need to finish the proof is:

Proposition 1.5.4. Let s and t be two elements of C{S). The
class r\(t — s) is equal to the image of M(s,t) in H2DR(C).

By the previous lemma and the functoriality of r| we may shrink S to
suppose that 5 n t 0. To prove the proposition, we need the next lemma.
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Suppose now that T — S,Z s u t and X — C. Then the exact sequence
(5.1) becomes:

(5.2) 0 HlDR(C/S) - HlDR(W/S)-- H2DR(C/S) -» 0

Furthermore H2DR(C/S) is canonically isomorphic to A'[5] with generator
t\s(s) hs(0 and so the kernel of H°DR(Z/S) -> is a principal
K[S] module with generator D s - t. Using this generator, (5.2) yields an
extension Bs t of the connection (ÄT[S],<i) by (HXDR(C/S), V).

Lemma 1.5.5. Identifying HXDR{C/S) with HXDR(C/S), the
extension Bs>t is isomorphic to the dual of ESJ.

Proof. Regarding the complexes &C/s,z and Q'c/s(Log(Z)) as

subcomplexes of Q w/s>z the wedge product gives a product from

^c/s.z ^ ^c/s (Log(Z))

into Q^/s which induces a pairing

):HlDR(C/S,Z)x Hxdr{W/S) - tf[S]

This pairing is compatible with the exact sequences

0 - HHC, Q'c/S) - Hxdr(C/S,Z)- HHC, Q°x/S) - 0

0 - HHC, Q; ,(Log(Z)) - H-H\C, - 0

arising from the Hodge to de Rham spectral sequences for hypercohomology
(which degenerate). In other words, the image of H°{C, Q^/s) 1n ^XDR(C/S, Z)
is perpendicular to the image of H°{C, Q^/5(Log(Z)) in HXDR(W/S) and if we

identify Q°xz with jfc(Z) and Oc/s(L°g(^)) with ^c/s(-Z) the pairings
induced on H°(C, Q[/s) x Hl(C, J?c) and on

HHC,Ci°x,z)X H*(C, OLs(Log(Z)))

are the natural ones. Since these pairings are non-degenerate, it follows that
the pairing on HXDR(C/S,Z) x HXDR(W/S) is non-degenerate.

It is also clear that the image of H°DR(Z/S) K[Z] in HXDR(C/S,Z) is

perpendicular to the image of HXDR(C/S) in HXDR(W/S) and that the pairing
induced on HXDR(C/S) x HXDR(C/S) is the natural one.

The lemma will follow from the following claim: Let i denote the map from

K[Z] to Hxdr(C/S,Z) and Res the map from HXDR{W/S) to K[Z\. Let TZ/s

denote the trace from K[Z] to K[S]. Suppose c e K[Z] and co g Hxdr(W/S).
Then
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(i(c),w) - Tz/S(cRes (CO))

Indeed, if s*c 0, t*c 1, Res5(co) 1 and Res,(co) - 1 then

- rz/s(cRes(co)) 1.

To prove this claim we may shrink S. Hence, we may assume first that

{U, V}(U < V) is an ordered affine open cover of C such that U C - s and

V C - t, second that i(c) is represented by a hypercocycle of the form
9({&u,g>}) where s*gu s*c and t*gv t*c and third, since the composition

H°(C, Qj-yS(Log(Z)) -> HlDR(W/S) -+ K[Z] is surjective, that w is in the

image of HQ(C, Q^/s(Log(Z))), i.e., w is represented by a hypercocycle of
the form ({00^/,coK}, 0) where <x>u co ov on UnV for some
co e H°(C, Qc/s(Log(Z))). It follows that (i(c), w) as an element of
HlDR(C,Q c/s) — H2dr(C/S) is represented by the cocycle {vu.v} with

Vu,v (gv~gu)co. Since the image of this element in Ä"[5] is

Res,(-gt/Co) + - Resf(gyco) - 0>*gt/Res5(co) + t*gvResr(co))

— — TV/s (cRes (co))

this establishes the claim and the lemma.

End of proof of Proposition 1.5.4

Consider the commutative diagram of complexes of sheaves with exact
rows and columns

0 0 0

1 i 1

0 -> ^^(x)0^/s(-l) Q'c -> Q'c/S 0

i 1 i
0 — Qs<g>Qc/s(Log(Z))(-l) ^c(Log(C)) Qc/s(Log(Z) 0

i 1 I
0 —> Qs®Qz/5( — 2) — Qz(—1) -> Qz/S(— 1) —* 0

i 1 I

o 0 0

If we take hyper-cohomology of this diagram we obtain a commutative
diagram
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3ßi<g
I I

I

H°dr{Z) - HlR(Z/S)

i I

HlDR(C/S) - Qi ® HlDR(C/S)-H2dr(C)-^Lcc/S)

with exact rows and columns in which the bottom row is part of the Leray
long exact sequence. Let a be the element in H°DR(Z) corresponding to the

divisor s - t. The image of a in H2DR{C) is r\(s - t) by Lemma 1.5.1. On the

other hand the image of a in H°DR(Z/S) is our chosen generator of the kernel

of the map to H2DR(C/S). In particular, it is the image of an element b of
HlDR(W/S) and V(b) is the image of an element c of (x) HlDR(C/S)
whose image in H2DR(C/S) is the same as that of a by an elementary diagram
chase. On the other hand, the image of c in Hl(HlDR(C/S), V) is the class

corresponding to the extension Bs t by definition (see Proposition 1.1.1)
which is, after identifying HlDR(C/S) with HlDR(C/S) - M(s, t) by
Lemma 1.5.1 and Lemma 1.5.3. Hence the image of M(s, t) in in H2DR(C) is

- T[ (s - t) m r| (t - s) as required.

Now we are in a position to prove the Theorem 1.4.3. We will suppose

M(s, t) 0 which amounts to r\s(t - s) 0 by the Proposition 1.5.1. Recall,
that A is the Jacobian of C/S. Let d denote the divisor class of t - s in

A(K(C)). We will show that the canonical height of d is zero. We may replace
S by a finite étale cover and complete C to a properly semi-stable curve C

over the completion S of S which is smooth over K. Let D be a Q-rational
divisor on C which is perpendicular (under the intersection pairing) to all the

irreducible components of all the fibers of C/S and whose restriction to C
is t — s. Such a divisor exists by the function field analogue of Theorem 1.3

of [Hr] (see also Theorem 5.1 (i) of [Ch]). It follows that the image of r|(D)
in H2dr(C) is T|(t - s) 0. Corollary 1.5.2 implies that r|(T>) is in the span of
{rj(y)} where Y runs over the irreducible component of the closed fibers above

C - C. In particular, D • D 0 using Theorem 7.8.2 of [H], On the other

hand, D-D is - 2 times the canonical height of d by the function field
analogue of Theorem 5.1 of [Ch]. It now follows from Theorem 5.4.1 of [L],
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that the image of t — s in J(C) is a constant section which completes the

proof.

6. The analytic proof

In this section we will suppose K — C.

a. The Poincaré Lemma

Suppose (5^ V) is a sheaf on San with integrable connection. Then by the

Poincaré lemma for integrable connections, it follows that the complex of
sheaves

Qlsat> (X) 5^ Q2San ®

is a resolution of the sheaf 5^v. Hence,

Proposition 1.6.1. V) is naturally isomorphic to // v).

Remark. As in Proposition 1.1.1, LP(5^V) is isomorphic to

ExtWe can describe the isomorphism from V) to
HX(S, SZ v) explicitly as follows: Let h be an element of V). Let
is a covering of S by open disks. Suppose W is an extension of J0V by
corresponding to h. Then is an extension of j@San by 5^ Lor each

U e Sê, there exists an sy e Sf (U)v which maps to 1 in Then the

image h in Hl(S, 5^v) is the class of the cocycle {(U, V) -> sv - sv}.
Suppose, X is a smooth proper S-scheme and Z is a subscheme of X which

is either empty or finite over S. We will define the Betti homology sheaf

^[(X/S, Z, Z) on San as follows. If Z is smooth over S, we define

://i(X/S, Z, Z) to be the sheaf associated to the presheaf

U //,•(/ f ~l(U) n Z, Z)

(this latter group is the Betti homology of f~l(U) relative to f ~l(U) n Z).
More generally, let S' be a non-empty affine open subset of S such that
Z' Z x sS' is étale over S'. Let X' X xsSr and let i denote the inclusion
morphisms X' -» X, Z' -> Z and 5' - S. We set

M~i(X/S}Z,Z) \^i{X'/S\Z\T)
This is independent of the choice of S'. We also set

W](X/S, Z) àé^iX/S, 0, Z) and Z, C) - M~x(X/S, Z, Z) (x) C



410 R. F. COLEMAN

Suppose s and t are two distinct sections of X/S and Z su t. Suppose
S' is an affine open of S such that Z' is étale ove S' in the notation of the

previous paragraph. We have exact sequences

0 i//~x(X/S, Z) -* &Tx(X/S, Z, Z) -+ i*s^o(Z'/S', Z) M^0(X/S, Z) -* 0

and

0 j%T0(S7S',Z) -* i^(Z'/S',Z) Mo(X'/S',Z)

where the first map is t* — s*. From which we derive the short exact sequence

o -> j&r^x/s, z) -> ///\(x/s, z,z)->z-*o.
since i*Z \S'm Z. In particular, if U is an open disk in San, we have an

exact sequence

0 i//\(X/S, Z)(U) -> àXx(X/S, Z9Z)(U) - Z -> 0

We define the Betti cohomology sheaf (X/S, Z, C) in the same way
and it is easy to see that \X/S, Z, C) Horn(/XTx(X/S, Z, C), C). Also, it
is known that if Z is étale over S then AZ1 (X/S, Z, C) Rlf^z where 54 is

the subsheaf of C whose sections vanish on Z.

Suppose X is proper over S with connected fibers. Let

WDR{X/S, Z),V) <g> Z), V)

We claim, for Z ç Xfiniteover S.

(M~lDR(X/S,Z),V) s (X) X#"1 Z, C), d® id)

This follows from the relative Poincaré lemma above on S' and hence on all
of S since both sides are integrable connections. Hence,

Lemma 1.6.2. There is a natural isomorphism

X/S,Z),V) (j@s.n (X) Z, C

In particular

Hl(/XrxDR(X/S, Z)v, V) s M~x(X/S, Z, C))

We conclude, using this, Proposition 1.1.1 and GAGA that

Theorem 1.6.3. There exists a natural isomorphism

ß : Ext (H'DR(X/S),JPS)-^(X/S, C))
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b. End of Analytic Proof

Now suppose X is an Abelian scheme over 5. We have an exact sequence

of sheaves over San,

0 sZfX/S, Z) -> J/'ieXan,s*n Xa" -> 0

From the corresponding long exact sequence of cohomology groups we obtain

an exact sequence

J/'iex**/s*"(San) Xa"(San) Hl(San, uZ fX/S, Z))

We may describe 0(5) as follows: Suppose e^s. Let Z eus. Then as

f*(Qxa„/San) maps into .Z ^(Z/S), :// \(X/S, Z, Z) maps into

f* (Q xan 5<7/i X iCx°n san

so that the diagram

jXfX/S, Z, Z)

' \
(X/S, Z) " ieXan son

commutes. Let Z be an ordered covering of 5 by open disks. For each

U e Z let y L- e :X\(X/S, Z,Z)(U) such that yL--+ 1 under the map
cZ i(X/S, Z)(U) -»• Z. Then the image of y L- in X(U) is s(U). Hence 6(5) is

represented by the one cocycle {(U, V)~+yL - yr}.
Now, it follows from this and the remark after Proposition 1.6.1 that

ß : M is equal to the composition of 5 and the natural map

Hl(San, sXfX/S, Z)) -> jZ \(X/S, C) Hl(San, AZl(X/S, Z)) ® C

Hence, if 5 e Xan(San),M(s) 0 iff there exists a positive integer n such that
6(775) /7Ô(5) 0. Hence ns is in the image of X iex°n/san(San) Xan(San)
and so is an infinitely divisible element of Xan(San).

Suppose 5 e X(S). We claim ns is an infinitely divisible element of Z(S).
Let 777 be a positive integer. Let t e Xan(San) such that mt ns. There exists
a finite étale Galois covering S of S such that t e X(S). If o e Gal(5/S),
then ta t because ta(x) t(o ~l(x)) for x e S(C). It follows that t e X(S).
This establishes our claim.

Finally, it follows from the function field Mordell-Weil Theorem [LN] that
the image of ns in ZC(s)(C(5)) is a constant section X/S. Theorem 1.4.3 now
follows immediately.
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