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THE DISTANCE BETWEEN IDEALS

IN THE ORDERS OF A REAL QUADRATIC FIELD

par Pierre Kaplan and Kenneth S. Williams l)

1. Introduction

The notion of the distance between two equivalent, reduced, primitive

ideals of an order in the ring of integers of a real quadratic field was first

introduced by Shanks [7] in 1972 in order to develop a more efficient algorithm

for computing the fundamental unit of the field, although this notion was

already implicit in the work of earlier authors including Lagrange [2]. Shanks

used the language of binary quadratic forms to describe the concept of
distance. This concept, still described in terms of binary quadratic forms, was

made more precise and exploited by Lenstra [4] (1982) and Schoof [6] (1983)

in their work on quadratic fields and factorization. In 1986 Williams and

Wunderlich [12] gave a treatment of distance in terms of ideals, and used it
to develop a simple algorithm for use in the continued fraction factoring

algorithm. Parts of their theory have also been used in numerical studies of
Eisenstein's problem [9] [11].

The aim of this papers is two-fold. We first give a complete treatment of
the basic theory of the distance between equivalent, reduced, primitive ideals

in the hope of making this attractive and useful theory better known and more

readily available for further research. Our treatment is based mainly on the

presentation of Williams and Wunderlich [12], but, in our view, is simpler in
some aspects. Our second objective is to define a homomorphism between the

ideal class groups of different orders and to apply this theory to compare
distances between corresponding ideals in the two orders. The presentation is

self-contained in that factorization of ideals in an order of a quadratic field
is not needed, nor do we use the theory of the units of a real quadratic field.
Indeed the theory of units is a consequence of our presentation, see

Corollary 5. We give known results as Propositions and new results as

Theorems.
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Throughout this paper, if A is a unitary commutative ring, and

ai, a2, am are elements of A, the Z-module generated by oq, a2, am is

denoted by [oq, a2, am] and the A-module (ideal) generated by
cq, a2, am by (cq, a2, am). The product of the ideals (ai, am) and

(aj, a'n) is the ideal (oqa;, oqa'j} ama'r). If I is an ideal, we often
write the product ideal (a) I as a I.

2. Basic definitions

Let K be a quadratic field of discriminant D0. As D0 is a discriminant we

have D0 0 (mod 4) or Z)0 1 (mod 4). In §2 and §3 K may be real (D0 > 0)

or imaginary (D0 < 0) but in the remaining sections K will be assumed to be

real. An element a of K can be written a x + y ]/5ö, where x and y are

rational numbers. The conjugate of a is the element ä x - y]/Do of K.
The norm of a is the rational number N(a) aä x2 - D0y2. We define

the integer co0 of K by

(2.1) COo

(Do

2
if D0 0 (mod 4)

-(1+1/Do), if £)0 =1 (mod4).
u

The ring of integers of K is 0Dq [1, co0]. For a positive integer / we set

(2.2) D D0f2, ©

Vd
— if D s 0 (mod 4)

2

- (1 +1/5) if D 1 (mod 4)
2

and

(2.3) [1, co] [1, /co0]

It is easy to check that Od is the subring of index / in 0Do, called the order

of discriminant D. We note that

(2.4)

D if D 0 (mod 4)

(D- 1)
co H if D 1 (mod 4)
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