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L'Enseignement Mathématique, t. 36 (1990), p. 369-391

CATÉGORIES DÉRIVÉES ET DUALITÉ,

TRAVAUX DE J.-L. VERDIER

par Luc Illusie l)

Je vais parler des travaux de Verdier en algèbre homologique dans les

années soixante, du moins des plus célèbres d'entre eux: sa thèse sur les

catégories dérivées, et ses contributions aux théories de dualité.

L Catégories dérivées

1.1. Les catégories dérivées ont eu d'innombrables applications. D'un
maniement réservé, au début, à un petit cercle d'initiés autour de

Grothendieck, elles sont devenues aujourd'hui d'un usage courant dans

quantité de domaines, bien au-delà de la géométrie algébrique (je pense

notamment à l'analyse microlocale). Pour comprendre la révolution qu'a
constituée l'introduction des catégories dérivées, il faut se replacer en 1960.

A cette époque, l'algèbre homologique est déjà très développée. Cohomologie
des faisceaux, foncteurs dérivés, suites spectrales forment une théorie élaborée,

pour laquelle on dispose d'excellents traités: le livre de Cartan-Eilenberg [3],
celui de Godement [10], et le long mémoire de Grothendieck [13], unifiant et

généralisant les constructions de [3] et [10]. Pourtant, Grothendieck se rend

compte que ce formalisme est nettement insuffisant pour ce qu'il envisage de

faire. Deux ans plus tôt, au Congrès international d'Edimbourg, il avait en
effet esquissé [14] un vaste programme de reconstruction de la géométrie
algébrique: la théorie des schémas. Dans le cadre de ce programme, il avait
annoncé des extensions du théorème de dualité de Serre [28] aux faisceaux
cohérents sur des variétés algébriques arbitrairement singulières. Au moment
d'entreprendre une rédaction d'ensemble de ses résultats, il s'aperçoit que, ne
serait-ce que pour formuler les énoncés qu'il a en tête, il manque des outils

b Exposé donné le 19 octobre 1989, lors de la cérémonie en hommage à Jean-Louis
Verdier organisée par l'Université de Paris VII.
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adéquats. Il conçoit alors une nouvelle théorie des foncteurs dérivés,

conduisant à une refonte complète de l'algèbre homologique. Il explique les

idées maîtresses de son projet à Verdier, et le lui propose comme sujet de thèse.

Verdier met rapidement sur pied les constructions essentielles, et, dans le

courant de l'année 1963, rédige un résumé des principaux résultats [V12].
Disposant alors des fondements voulus, Grothendieck expose la théorie de

dualité qu'il avait en vue dans un gros manuscrit [15], qui servira de base au
séminaire que Hartshorne dirigera à Harvard l'automne de la même année

[17]. Le résumé de Verdier [VI2] et le premier chapitre de ce séminaire

resteront d'ailleurs longtemps les seules références sur la théorie des catégories
dérivées.

1.2. L'observation de départ est que les constructions usuelles de l'algèbre
homologique fournissent non seulement des groupes de cohomologie, des

suites exactes longues, des suites spectrales, mais en général un peu plus: des

complexes avec une certaine indétermination. Pour préciser ce point,
Grothendieck introduit la notion suivante, fondamentale pour toute la suite: si

L - (...-> L' L/+1 M -* M1 ~>Mi+l ->...)

sont des complexes d'une catégorie abélienne et u:L~+M un morphisme de

complexes, on dit que u est un quasi-isomorphisme si H'u:HiL-> H1M est

un isomorphisme pour tout z. Les complexes obtenus en pratique sont «bien
définis à quasi-isomorphisme près».

A titre d'illustration, revenons sur la définition des faisceaux images

directes supérieures R '/* E, où / : X- Y est une application continue entre

espaces topologiques et E un faisceau abélien sur X. On choisit une résolution

0 7°-+/1

(i.e. un quasi-isomorphisme E^I), où les In sont des faisceaux abéliens

injectifs, on considère le complexe /*/ déduit de / par application terme à

terme du foncteur image directe /*, et l'on «définit» Rlf*E comme le

z'-ème faisceau de cohomologie de /*/,
R'f*E: s* •

Si E-+I* est une seconde résolution de E par un complexe à composantes

injectives, il existe un morphisme de résolutions /->/' (i.e. un morphisme de

complexes /->/' compatible aux augmentations E-+I, E->I'), qui est une

équivalence d'homotopie; le morphisme /*/- /*/' qui s'en déduit par

application de /* est encore une équivalence d'homotopie, a fortiori un quasi-
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isomorphisme: on obtient ainsi un système transitif d'isomorphismes entre les

r// V*/, et l'on peut, plus canoniquement, définir R'f*E comme la limite

(inductive, disons) de ce système. Parfois, on préfère «calculer» Rlf*E en

utilisant d'autres types de résolutions. Supposons qu'on ait une résolution

E-* C, où les composantes de C (C0-* C1-*...) sont acycliques pour /*,
i.e. telles que Rqf*Cn 0 pour tout q > 0 (et tout n ^ 0) (par exemple une

résolution flasque, ou une résolution par des faisceaux mous, ou une résolution
de Cech relative à un recouvrement ouvert convenable). Il existe alors un

morphisme de résolutions C~* I, qui n'est plus en général une équivalence

d'homotopie, mais qui, grâce à l'hypothèse faite sur C, est tel que /*/
est encore un quasi-isomorphisme. On a donc äfr 'f^C^R'f^E (d'où
d'ailleurs un système transitif d'isomorphismes entre les '/* C relatifs aux
divers choix de C). Mais la construction donne plus: la famille des complexes

/*C associés aux résolutions à composantes acycliques pour /*, qui forment
une seule classe «à quasi-isomorphisme près». Plus précisément, deux tels

complexes /* C, /* C' sont reliés par des quasi-isomorphismes

/*C/*/«-/* C". La connaissance de cette classe est bien sûr plus fine que
celle des R '/* E, elle permet par exemple de reconstituer les groupes de

cohomologie Hn(X,E) comme groupes d'hypercohomologie H"( Y, f*C) (ce

qui donne naissance à la suite spectrale de Leray de /, nous reviendrons sur
ce point plus loin).

1.3. C'est sans doute ce type de considérations qui a amené Grothendieck à

proposer la construction suivante, très naturelle, mais révolutionnaire à

l'époque: C(A) désignant la catégorie des complexes d'une catégorie
abélienne A, former la catégorie D(A) déduite de C(A) «en inversant formellement

les quasi-isomorphismes». Cette nouvelle catégorie s'appellera «catégorie

dérivée» de A; le «Joncteur dérivé total» droit (resp. gauche) d'un
foncteur additif F:A^ B devra être un certain «prolongement» de F en un
foncteur RE (resp. LE) de D(A) dans D(B), redonnant les R*F (resp. LlF)
par application de H1.

La construction de D(A), ou plutôt du couple formé de D{A) et du foncteur
C(A) D(A) comme solution d'un problème universel pour les foncteurs de

C(A) dans une catégorie D transformant quasi-isomorphismes en isomor-
phismes, ne pose pas de problème. Toutefois, Verdier observe qu'il est
techniquement plus commode de passer par l'intermédiaire de la catégorie, notée
K(A), dite des complexes à homotopie près (qui a mêmes objets que C(A), mais
où les flèches sont les classes d'homotopie de morphismes de complexes), et
d'effectuer la «localisation» en deux temps:
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C(A) -> K(A) - D(A)

le premier revenant à inverser formellement les homotopismes (ou équivalences

d'homotopie), le second les (classes d'homotopie de) quasi-isomorphismes. La
catégorie D(A) a encore mêmes objets que C(A). L'avantage de passer par
K(A) est qu'au lieu qu'une flèche u:L -> M de D{A) soit définie par une chaîne

de flèches de C(A) de longueur arbitraire

L... ,*-M
(où les flèches allant dans le «mauvais» sens sont des quasi-isomorphismes),
u s'écrit comme une «fraction» u fs~1 ou u t~ lg, où /, s, t, g sont des

flèches de K(A), et s, t des quasi-isomorphismes. Plus précisément, D(A)
s'obtient à partir de K(A) par un «calcul de fractions bilatère»: les quasi-

isomorphismes de K(A) forment une catégorie filtrante I, et

(1.3.1) HomD{A){L,M) limHomK{A)(L,M')
i

(énoncé analogue «de l'autre côté»), cf. [17, I §§3, 4].

1.4. Les catégories K(A) et D(A) sont additives, mais ne sont pas en général

abéliennesl). Cet inconvénient est pallié, dans une certaine mesure, par
l'élément de structure fourni par la famille des «triangles distingués». Un

triangle de K{A) (resp. D{A)) est une suite de morphismes de K(A) (resp. D{A))

L^M^N~+L[1]
(où L[l] est le complexe défini par L[l]' Li+1, dL[x] - dL), notée aussi

N

+/ \
L M ;

on a une notion évidente de morphisme de triangles. On dit qu'un triangle est

distingué s'il est isomorphe au triangle standard défini par le cône C(u) d'un

morphisme de complexes u:E^ F,

E^F^C(u)-^E[1]

où C(u)' Ei+l ©T7', dC(u) ~ dE + u + dF, i:F-> C(u) est l'injection

En fait, on peut montrer (Verdier, non publié) que K(A) (resp. D(A)) n'est abélienne

que si A est semi-simple (i.e. telle que toute suite exacte courte de A se scinde).
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naturelle, et p:C(u)^E[ 1] est Y opposé de la projection naturelle. Par

exemple, une suite exacte courte de complexes

donne naissance à un triangle distingué de D(A),
caractérisé par le fait que

soit un morphisme de triangles, où s1 est le quasi-isomorphisme donné par j
sur L' et 0 sur L'l+l ; alors Hid:L"1 ->Z/' + 1

est l'opérateur bord habituel de

la suite exacte longue de cohomologie (ceci explique le signe de p choisi plus

haut).
Les triangles distingués de K(A), D(A), et de catégories qui s'en déduisent

naturellement (sous-catégories pleines définies par des conditions de degré ou
de finitude, catégories «quotients» obtenues par inversion formelle de

certaines flèches) ont en commun un certain nombre de propriétés
remarquables, que Verdier axiomatise en introduisant la notion de «catégorie
triangulée». Une catégorie triangulée est une catégorie additive D, munie d'un
automorphisme dit de translation, noté IkL[ 1], et d'une famille de triangles
dits distingués, soumis aux axiomes suivants, que nous recopions pour la
commodité du lecteur (cf. [17], [VI2]):

(Tl) Tout triangle de D isomorphe à un triangle distingué est distingué. Pour
Id

tout objet L de D, le triangle L L 0 -+ L [1] est distingué. Tout morphisme
de T est contenu dans un triangle distingué L M-+ N-+ L[l].

U U w
(T2) Un triangle L M~> N~* L[ 1] est distingué si et seulement si le triangle

U w - w [ 1 ]

M-*N-*L[Ï\ -* M[1] est distingué.

(T3) Tout diagramme de D

L ~ M N L[l]

L'»- MN' "-£'[!]
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où les lignes sont des triangles distingués et le carré est commutatif, se complète
en un morphisme de triangles.

(T4) Pour tout couple de flèches u:L -+ M, v:M^> N de D et tout triplet de

triangles distingués

L^M^N'-+L[1] M^N-+L,Z>M[l]N-+ -+ [1]

il existe des flèches a\N' -> M' et b : M' L ' telles que (ldL,v,a) et (u, Idyv,&)
soient des morphismes de triangles et que le triangle

a b x[l]-y
N'[ 1]

soit distingué.

L'axiome (T4) s'appelle souvent axiome de l'octaèdre, en raison de la figure
obtenue, où les quatre triangles hachurés sont commutatifs, et les quatre autres

distingués :

Dans la catégorie D(A), (T4) résulte d'un cas particulier du fait qu'une injection

de suites exactes courtes de complexes s'insère dans un diagramme des
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neuf (suite exacte courte de suites exactes courtes); Verdier remarque d'ailleurs

que dans une catégorie triangulée, tout carré commutatif se prolonge en un

«diagramme des neuf» [1, 1.1.11].
Une structure un peu plus faible que celle de catégorie triangulée,

comprenant les axiomes (Tl) à (T3) mais non (T4), a été dégagée pour la

première fois, semble-t-il, par Puppe [25], pour exprimer les propriétés de la

catégorie homotopique stable.

1.5. Un foncteur additif F:A~+B entre catégories abéliennes se prolonge de

façon naturelle en un foncteur additif F:K(A) -> K(B), transformant triangles
distingués en triangles distingués. Ce dernier, par contre, ne transforme pas

en général quasi-isomorphismes en quasi-isomorphismes, donc ne se prolonge
pas en un foncteur de D(A) dans D(B). C'est ce défaut qui est à l'origine de

la définition (de Grothendieck-Verdier) des foncteurs dérivés «totaux»1): un
foncteur dérivé droit de Fest un couple formé d'un foncteur RF: D(A) - D(B)
et d'un morphisme m:F^> RF (entre foncteurs de K(A) dans D(B)),

universel en un sens évident (à savoir que, pour tout couple (F':D(A) -» D(B),
m':F^> F'), il existe un unique morphisme u:RF~>F' tel que m' um); de

même, un foncteur dérivé gauche de F est un couple formé d'un foncteur
LF:D(A) ~+D(B) et d'un morphisme m : LF -> F possédant une propriété
universelle analogue.

Le formalisme des catégories triangulées — et notamment la théorie de
«localisation» qu'il y développe — fournit à Verdier un cadre commode pour
l'étude de l'existence et des propriétés de transitivité des foncteurs dérivés. Le
plus souvent, le dérivé droit RF n'est pas défini sur la catégorie D(A) tout
entière, mais seulement sur la sous-catégorie pleine D + (A) formée des objets
à cohomologie bornée inférieurement (qui est aussi la catégorie déduite de
K+ (A) (formée des complexes à degré borné inférieurement) par inversion
des quasi-isomorphismes): plus précisément, c'est le problème universel
analogue relatif à F:K+ (A) K+ (B) qui admet une solution. C'est le cas par
exemple si A possède suffisamment d'objets injectifs (i.e. tout objet de A se
plonge dans un objet injectif); alors H'RF est le /-ième foncteur dérivé

') Ce qualificatif (destiné à marquer la distinction avec les foncteurs «traditionnels»R F, L'F) ne s'emploie plus guère aujourd'hui.

K(A) D(A)

F

K(B) D(B)
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«usuel» R'F; de plus RF transforme triangles distingués de D + (A) en

triangles distingués de D + (B); si 0 L' -» L -> L" 0 est une suite exacte

courte de complexes (appartenant à K+ (A)), on en déduit (cf. 1.4) un triangle
distingué L' -> L L" -> L'[\] de D(A), d'où un triangle distingué
RFL'->RFL-+RFL"^>RFL'[1] de D(B), et Hid:RiFL" -+ Ri+lFL' est

l'opérateur bord usuel. Le prototype de cette situation est le cas où F est le

foncteur image directe /* des -^--modules vers les ^y-modules, où

f:X~+ Y zst un morphisme d'espaces (voire de topos) annelés. Le principe de

la définition de RF est simple: pour LeK+(A), on choisit un quasi-
q

isomorphisme L->/, où IeK + (A) est à composantes injectives (il en existe
si A admet assez d'injectifs), et l'on «pose» RFL FI, m Fq : FL -> FI.
Quand de plus F est de dimension cohomologique finie (ce qui veut dire qu'il
existe un entier A/" tel que R'F 0 pour i> N), alors RF zst défini sur la
catégorie D(A) tout entière. De manière analogue, le dérivé gauche LF n'est défini
le plus souvent que sur la sous-catégorie pleine D ~ (A) formée des complexes
à cohomologie bornée supérieurement (qui est aussi la catégorie déduite de

K~ (A) (formée des complexes à degré borné supérieurement) par inversion
des quasi-isomorphismes). La situation est en fait moins bonne que pour les

dérivés droits, car il est rare que A possède suffisamment de projectifs; le

prototype est le cas du foncteur F f* pour un morphisme / comme ci-
dessus: bien qu'il n'y ait pas, en général, assez de projectifs dans la catégorie
des _^y-modules, on parvient à définir Lf*:D~(Y)-+D~(X) (où D(-)
désigne la catégorie dérivée de celle des ^-modules), en «posant»

Lf*L f*P, où P-+L est un quasi-isomorphisme avec P à composantes
plates et à degré borné supérieurement.

Si G.B^C est un second foncteur additif entre catégories abéliennes,

alors, sous des hypothèses convenables, on a un isomorphisme de transitivité

R(GF) X çrg) CRF) (resp. L(GF) X ÇLG) (LF))

entre foncteurs de D + (A) dans D + (C) (resp. de D~(A) dans D~(C)) (voire
de D(A) dans D(C)). Pour les dérivés droits, c'est le cas par exemple si B
possède assez d'objets injectifs et F transforme injectifs de A en objets

acycliques pour G (i.e. sur lesquels R'G 0 pour / > 0). A titre
d'illustration, on peut prendre pour F le foncteur /* de tout à l'heure et pour G le

foncteur sections globales r(Y, -) (car l'image directe d'un injectif est

flasque). L'isomorphisme T(Y, f*E) — T(X,E) se dérive alors en

RT(Y,Rf*L) - RT(X,L) (LeD + (X))
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C'est la formule à laquelle j'ai fait allusion à la fin de 1.2, et qui, par la suite

spectrale des foncteurs composés, fournit la suite spectrale de Leray de /
Epg HP(Y, Rqf*L) => H*(X, L)

Au lieu de partir d'un foncteur additif F\A~* B, on peut considérer plus

généralement un foncteur exact F:K(A) K{B) (ou K*{A) -> K(B), * +

ou -), «exact» voulant dire additif et transformant triangles distingués en

triangles distingués, et définir de manière analogue les notions de dérivés droit
et gauche de F. On peut aussi considérer des multifoncteurs
K(A{) x x K(An) - K(B) covariants en certains arguments et contra-
variants en les autres, et étendre la théorie des foncteurs dérivés à ce cadre.

Le formalisme des foncteurs dérivés fournit une interprétation intéressante
des homomorphismes dans la catégorie dérivée. Si A possède assez d'injectifs,
le bifoncteur «complexe des homomorphismes»

Horn' :7^(A)° x K{A) -> K(Z) (L, M) ^ Hom'(L,M)

(où C(Z) désigne la catégorie des complexes de groupes abéliens et C° la
catégorie opposée à une catégorie C) se dérive en un bifoncteur

£Hom:D(A)° x D + (A) -+ D(Z)

et l'on a un isomorphisme canonique

HomD{A)(F,M) H°RHom(F,M)

pour FeD(A), MeD + (A). En pratique, cette formule est beaucoup plus
utile que (1.3.1). Si A est la catégorie des -^-modules sur un espace (ou
topos) annelé, on peut en effet analyser le second membre à l'aide du foncteur
dérivé RMom du foncteur Mom («complexe des faisceaux d'homomor-
phismes de ^-modules»): la formule T(X, Mom'(F, M)) Horn (L, M) se
dérive en

RY(X, RMom{F, M)) — i?Hom(L, M)

(pour F ED~{X),MeD + {X)), d'où

(*) HomDW(L, M) - H*(X, RMom {F, M))
(0-ième groupe d'hypercohomologie de X à valeurs dans le complexe
RMom {F, M))\ des informations sur les faisceaux de cohomologie de L et M
permettent alors, grâce à (*), d'obtenir, par diverses suites spectrales, des
renseignements sur le groupe HomD{X)(L,M), parfois de le calculer
complètement.
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Deligne a introduit dans (SGA 4 XVII 1.2) une notion légèrement différente
de foncteur dérivé, un peu plus souple en ce qu'elle permet de parler de «déri-
vabilité en un point» (i.e. en une valeur donnée de l'argument). Dans la plupart
des cas, elle coïncide néanmoins avec la notion précédente.

1.6. Si A est une catégorie abélienne, A se trouve plongée de façon naturelle
dans la catégorie dérivée D(A), comme sous-catégorie pleine formée des

complexes concentrés en degré zéro. Ce n'est pas le seul exemple d'une

catégorie abélienne plongée dans la catégorie dérivée. La théorie des faisceaux

pervers en fournit d'autres, non triviaux. Pour l'étude systématique de ces

plongements, le formalisme des catégories triangulées s'avère être un outil
efficace, comme le montrent Beilinson-Bernstein-Deligne-Gabber [1] (pour un
historique de la théorie des faisceaux pervers et une vue d'ensemble de ses

développements, je renvoie le lecteur au rapport de Kleiman [22]).

1.7. Dans une catégorie triangulée D, toute flèche u:L~+ M admet, d'après

(Tl), un «cône» TV, i.e. s'insère dans un triangle distingué L -> MTV-> L[\].
Il résulte des autres axiomes que N est unique à isomorphisme près, cet isomor-
phisme n'étant toutefois pas unique. Si u:L~+ M, u'\L' -> M' sont des bases

de triangles distingués de troisièmes sommets N, TV', tout morphisme des bases

se prolonge, d'après (T3), en un morphisme de triangles, mais le morphisme
des cônes correspondant N-+N' n'est pas unique, et il n'existe pas a priori
de choix canonique (en fait, comme le montre Verdier dans sa thèse, l'existence

d'un «foncteur cône» imposerait des restrictions draconiennes à D: par
exemple, siD D{A la catégorie abélienne A serait semi-simple). Cette difficulté

est à l'origine de la théorie des catégories dérivées filtrées [18, V], où la

construction cône, non fonctorielle, est remplacée par celle de gradué associé,

qui l'est. Ce formalisme et ses généralisations jouent un rôle essentiel dans la

théorie de Hodge mixte de Deligne (cf. [5], [6], et, plus récemment, [26], [27]).

Il n'a toutefois pas été dégagé de structure axiomatique jouant vis-à-vis des

catégories dérivées filtrées le même rôle que les catégories triangulées vis-à-vis
des catégories dérivées ordinaires.

2. Dualité

Comme on l'a dit au début, ce sont les théories de dualité qui ont constitué

la motivation initiale pour l'introduction des catégories dérivées. Elles en ont

fourni aussi les applications les plus remarquables.
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