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188 G. CAIRNS AND R. W. SHARPE
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and Q1is asin §6. It follows that the inversive curvature Q determines the curve
up to an orientation preserving inversive automorphism.

§8. RELATION WITH CARTAN’S MOVING FRAMES

Let us sketch a more usual way of obtaining a Frenet lift. The connection
with the Schwartzian described here can be found, for example, in Cartan’s
book [4] and very succintly in [7]. The canonical line bundle

p:§—~PYC)
has a pedestrian description (away from the zero-section) as:

(z1,22) €& — {zero section} = C? — {0}
i) 2

Z
Z = 2o [z1, 2] P I(C)
V)

Let o:(a,B)>R>*CP!(C) be a curve; we choose an arbitrary Ilift
6 = (2:1(t), (1)) and set fy = A0, f2 = f1 = Mz1,22) + MZ1, Z2), where -

d
= ;1— Thus (f, f») is a frame in C2?. We try to choose A so that this
t

frame has area 1. The condition on A is:

1 = Area(f, f2) = Area(Mzi(1),22(1)) , MZ1, 22))
= Xz(Zléz—Zzél), or 1 = — (Kzz)zé .
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Thus A = - will do, and we have
Zzl/Z i
f = = (Z: 1) ’
| I/Z
x 1 ... e
and f,=f = —Eizz*”(z, 1) +iz"%z,0) .

p 3., l ..
Finally a calculation shows that f, = Sf;, where S = 1 ey =X =5 g2& =1L,

Of course S is the Schwartzian derivative which this calculation interprets
as a ‘“‘curvature’’ of o. Now the Schwartzian S depends on the particular
parametrization which is used for the curve. For our purposes we wish to use
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inversive arc-length as the parameter, so that the ‘‘curvature’’ S becomes an
intrinsic invariant of the curve in inversive geometry. And in this case it turns
out that S has constant imaginary part. To see this we describe S in terms of
the more familiar Euclidean curvature and its derivatives with respect to
Euclidean arc-length.

The Euclidean and inversive arc-lengths are related by the equation:

d
2ds, where '~ = — . Thus:
ds

dv =[x’
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Using these expressions we can calculate the Schwartzian as:

7 = sgn(k’)e’®|k’

.o 2 ..‘ 2 .
3(z 1z 4(k"" -’k )K" — 5k” i 1 ,
-] — = - =sgnk’ — — = - sgn(x’) (Q—1i
4(2) 52 gn( ){ e 2} 5 S8 Q—1i)

Regarding the vectors f| and f, as column vectors, we obtain a 2 by 2 matrix
h = (f,, f1)€G, and according to the calculation above we have:

- 0 1
(f2, S0 = (f2, fD) (S O)
Thus A(v) and g(v) (cf. §7) are equal up to left multiplication by a constant
element of G. This interprets Cartan’s canonical frame (f1, f2) as the unique
frame (up to a constant element of G) forming the columns of a matrix in G
which moves the standard curve y = x3/6 to the given curve with contact up
to 4th order at the given point.

§9. LOXODROMES

To calculate the curves with Q constant we solve the equation:

0 1
d_g - 1 h _ ’
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