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280 V. CHARI AND A. PRESSLEY

COROLLARY 2.9. As representations of Y, we have

Wa)* = Wyu(—a) .
Proof. On W,(a), J(x) acts as ax. Therefore, on W, (a)*, J(x) acts as
— ax.

The following is a related result.

PROPOSITION 2.10. Every evaluation representation W,,(a) has a non-
degenerate invariant symmetric bilinear form.

This means that there is a non-degenerate symmetric bilinear form < , >
on W, (a) such that

(2.11) <YP.U,0> = <U,0(().0,>
for all ye Y, vy, v,€ W, (a).

Proof. 1t is well-known that the representation W,, of 81, carries a form
< , > which satisfies (2.11) for all y € /,. Moreover, the form is unique up
to a scalar multiple because W,, is irreducible. To prove (2.11) in general, it
suffices to check the case y = x, , since the case y = x, then follows because
< , > is symmetric, and w(x,) = x, . Since vectors of different weights
are orthogonal, it is therefore enough to prove.

(2.12) <Xp ., e > = <€, Xp .l >

(with the understanding that e; = 0 unless 0 < i < n). This follows easily from
Proposition 2.6 and the invariance of < , > under §[,.

3. A COMBINATORIAL INTERLUDE

The form of the polynomial P associated to the representation W, (a) in
Corollary 2.7(b) suggests the following definition.

Definition 3.1. A non-empty finite set of complex numbers is said to be
a string if it is of the form {a, a + 1, ..., a + n} for some a € C and some n € N.

. n . .
The centre of the string is a + 5 and its length is n + 1.

We shall also need:

Definition 3.2. Two strings S; and S, are said to be non-interacting if
either



YANGIANS 281

(1) S, u S, is not a string, or
2) SicSorsScs.

Remark. We shall discuss the ‘‘interactions’’ of strings in section 4.

We should like to assert that the set of roots of an arbitrary polynomial
is a union of non-interacting strings. To make this precise, we need one last
definition.

Definition 3.3. A set with multiplicities is a map f:X — N, where X is
a set. If X is a finite set, the cardinality of f is

[ fl=Y f& .

xeXl

The union of two sets with multiplicities is the sum of the corresponding maps.

Note that any set is a set with multiplicities, all values of the map being equal
to one. Also, the roots of a polynomial P € C[u] form a set with multiplicities
in a natural way. In particular, the roots of the polynomial associated to
W,.(a) in Corollary 2.7 (b) form a single string

1 1 1 1
Sp@=4a—-—-m+—-,...,a+-m——
2 2 2 2

with centre ¢ and length m.
We shall need the following simple result whose verification we leave to
the reader.

LEMMA 3.4. Two strings S, (a) and S,(b) are non-interacting if and
only if it is not true that

1 1 1
a—-b|=-(m+n ,-(m+n —-1,..., or —|m—-nl| +1.
[a=b = (m+m) .o m+ ) S m=n|

The result we want is:

PROPOSITION 3.5.  Any finite set of complex numbers with multiplicities

can be written uniquely as a union of strings, any two of which are non-
Interacting.

Proof. Let f:XL — N be a finite set of complex numbers with

multiplicities. The proof is by induction on| f|. If| f | = 0 or 1 there is nothing
to prove.
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Choose s e X, let S be the maximal string of numbers in ¥ which contains
s, and let g be the characteristic function of S. By induction, f — g is a union
of non-interacting strings. If 7 is any such string, then S and 7 are non-
interacting, since if 77¢ S then S u T cannot be a string, by maximality
of S. Thus, adjoining S to the string decomposition of f — g gives the desired
decomposition of f.

As for uniqueness, we first show that the string S above must occur in
any decomposition of f as a union of non-interacting strings. For, otherwise,
let 7 be a maximal string in such a decomposition which contains s. Then T
is properly contained in S, so there exists €S — T such that T u {u} is a
string. Let U be a string in the given decomposition of f which contains u.
Then, by its maximality, 7 cannot be contained in U, so 7 and U are
interacting, a contradiction.

Thus, S must occur in any two decompositions of f as a union of non-
interacting strings. Deleting S from both decompositions and using the
induction hypothesis, one deduces that the two decompositions are the same.

We conclude this section with the computation of a determinant which plays
the same role for Yangians as the Vandermonde determinant plays in the
classification of integrable representations of affine Lie algebras [1].

Let r be a positive integer and let b;, m;, 1 < j < r, be complex numbers.
Quantities dy ;, Ay ; for 1 <j<r, 0 <k <r— 1, are defined inductively by
the following formulas:

Ak,j = bjk + bj/-{‘ldo’j Sl o dk—l,j
0

(3.6)

Il

dk:j = mj+1Ak,j+1 + dk,j+l s dk,r

(we set dy ,+1=0). Let A be the matrix (A, ;) withl </ <r0<k<<r—1.

PROPOSITION 3.7. detA = [[,_, .. (b — b —my).

Remark. One can think of det A as a ‘‘quantum Vandermonde determi-
nant”’’. Indeed, recall that Y is obtained from a deformation of U(81,[¢]) by
setting the deformation parameter # equal to one. If we had not set 7 = 1,
then in equation (3.6) di,; would be replaced by hd, ; and in equation (3.7)
m; would be replaced by hm;. Thus, in the ‘“‘classical limit” 4 — 0, detA
becomes the usual Vandermonde determinant and (3.7) its well-known
factorization.

Our proof of (3.7) is rather indirect and will be given in the next section.
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