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58 S. D. COHEN

It follows that, if yd is a root of M and Py(x, y) lies in Fg[x, y]$ then
both yd2 and yd{d~l) are members of Fq, whence yd eFq. This means that S

is an EP unless M has a root yd in F^. The converse is clear and the
result follows.

3. Substitution polynomials with a quadratic factor

Throughout, let f(x) be an indecomposable polynomial in Fg[x] for
which cpf{xy y) is divisible by an irreducible quadratic factor Q(x, y) in
Fq[x,y]. Denote by Q* the factor of (p/? irreducible over F^ itself, that is

divisible by Q.

Lemma 3.1. Gal Q*(x, y)/Fq(x) has order deg Q* and so is regular as a

permutation group on the roots of Q*(x, y) over Fg(x) (see [72], p. 8).

Proof Let Fqd be the field generated over Fq by the coefficients of
d

Q (in Fq). Then ß* Y\ Qi> where Q:,..., Qd are the distinct conjugates
i 1

of g obtained by applying the d F^-automorphisms of Fqd to the coefficients
of g. Thus degg* 2d. But, evidently, the splitting field of g* over Fg(x)

can be constructed by adjoining the splitting field of Q to Fgd. Its Galois

group therefore has order 2d as required.
With Lemma 3.1 as a spur, we formulate some group theory in terms of

polynomials (see [2]). For an indecomposable polynomial g(x) in F^[x],
G Gal (g(y) — z/Fq(z)) is primitive. Moreover, the orbits of a point stabiliser
Gx of G correspond to the irreducible factors of <pg over F^; in particular,
when P(x, y) is such a factor of <yg so also is P(y, x) and the associated

orbits are "paired" (see [12], § 16). The following result is therefore a

(slightly weakened) version of [12], Theorem 18.6.

Lemma 3.2. With g and P as above, suppose that both Gal P(x, y)/Fq(x)
and Gal P(y, x)/Fq(x) are regular. Then Gal cp^x, y)/Fq(x) Gal P(x, y)/Fq(x).

Corollary 3.3. With f and d as in Lemma 3.1, (p* is a product
over Fq of irreducible polynomials of degree 2d, each of which is a product

of irreducible quadratics over Fq. Furthermore, all these quadratics have a

common splitting field over Fq(x).
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Proof. Lemmas 3.1 and 3.2 yield

Gal cp/Oo y)/Fq(x) Gal Q*(x, y)/Fq(x) ;

in particular the splitting field of cp/ is a quadratic extension of FC]d (x).
Since the latter of necessity is also a splitting field of any irreducible
factor Qi of (py over F^, we deduce that deggi ^ 2. But (p/ has trivial
factorable part (by [1]) and therefore Q± itself must be a quadratic whose

coefficients, by another application of Lemma 3.2, also generate Fqd. All
the assertions now follow.

Next, we reformulate for polynomials a theorem about "self-paired"
orbits ([12], Theorem 16.5) in which the group concerned need not be

primitive.

Lemma 3.4. Let g(x) be a (not necessarily indecomposable) polynomial
in F^[x] such that Gal (g(y) — z/Fq(z)) has even order. Then cp* has an
irreducible factor P over such that P(y, x) cP{x, y), where

c(A 0)eF,.
We are now ready for the climax.

Theorem 3.5. Let f(x) be an indecomposable polynomial in F^[x]
such that cpf is divisible by an irreducible quadratic over Fq. Then
f{x) a/*(x + ß) + y, where a(^0), ß, y e Fg and either /* is a Dickson
polynomial of odd prime degree (#p) or p is odd and f* is a
(p, 2)-polynomial in C4.

Proof. We can assume that / is monic of odd degree, the latter by
Corollary 3.3. The same result implies that Gal (f{y)-z/Fq(zj) has even
order. Thus, we may select for Q the "symmetric" irreducible factor of cp^

over Fqd (or Fq) predicted by Lemma 3.4. Actually, Q is quadratic (by
Corollary 3.3 again) and we may suppose it is monic in y.

The symmetry of Q means that either

P-1) Qfe y) y2 - X2 + a(y-x) + b, a, be Fq,

or

(3.2) Q(x, y) y2 - axy T x2 - b(y + x) + c, a,b, ce Fq.
We suppose Q is given by (3.1) and quickly dispose of this possibility.

As Q is absolutely irreducible q cannot be even. Further, since the
homogeneous quadratic part of Q divides yn - x\ the homogeneous part
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of (py of highest degree (a fact we will continue to use), we deduce that
y2 — x2 divides yn — xn. When q is odd, however, this implies that n is

even, a contradiction.
We may therefore suppose that Q is given by (3.2) (with a ^ 0 if q is

even). Let m be the largest divisor of n prime to p. From the homogeneous

parts of highest degree, we must have a Ç -f Ç-1, where Ç is an mth root
of unity in Fq. Because n is odd it follows, in particular, that a # 0,

even if q is odd. We distinguish two cases which lead ultimately to the

alternative conclusions of the theorem.

(i) a i=- 2. We show in this case that / is essentially a Dickson
polynomial. The argument is facilitated by a technical lemma of Turnwald [11]
which allows us to work only in Fq. Specifically, taking a a' y 1

and noting that this implies y' 1 in Lemma 3.1 of [11], we see that
it suffices to prove that p Jf n (i.e., m n) and f(x) gn(x + ß, A) + y, where

A( 7^ 0), ß and y g Fq.

Begin by setting ß a= b/(a — 2) and replacing f(x) by /(x + ß). This means
that we can assume that b 0 in (3.2) and also c ^ 0 (otherwise Q is

reducible). Now define ^4(^0) by c (a2 — 4)A (Ç —Ç_1)2A Recall from

Corollary 3.3 that <Pf(x,y) and every (quadratic) factor of (pf(x, y) have

a common splitting field K over F?(x). Regarding K as the splitting field
of Q, we have K F^(x, 0), where

0 V(x2 — A), if q is odd

(3.3) 02 + 0 A/x2 if q is even

(For q even this uses the ideas of [8], p. 379 and the fact that Fg is

algebraically closed.)
Next let Q\(x, y) be any irreducible (quadratic) factor of (pf{x,y). For

some mth roots of unity and Ç2 and blib2,c1 in Fq, we can write

Qi(x, y) y2 -(Ci +t,2)xy+ CiC2- b2x + c1,

which is "paired" with the monic factor Q\{x,y) x\Qi(y, x), where

r, Thus

2i (x,y)y2 - (Cr1 + Ç2 l)xy + r\x2 - r\b2y - -^b^x + rie!

For the moment suppose q is odd. The discriminant of Q1 (as a

polynomial in y) is

Ki~ Ci)2*2 + 2(&1(^1 + ^2) + 262)x + b\ — 4c1
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while that of Q\ is

Tr{(C-C)2*2 + 2(b2(ç1 + y+2b1ç1Qx +

By (3.3) these both must be a non-zero constant multiple of x2 — A. We

deduce that

(3.4) Çi 7^ Ç2

(3.5) ^iKÎ + CI) + 2b 2 62K1+Ç2) + 26^^ 0

and

(3.6) b\ — 4c1 b2 — 4^x^2ci c ^ 0.

From (3.5) b\ an<3 hence ÇXÇ2 1 by (3.6); thus b2 b\. If
b1 ^ 0, then (3.5) implies that Çi Ç2 ±1, contradicting (3.4). We

conclude that b1 b2 0, Ç2 CT1 an(3 c ^Ki — Ci"1)2- Since was

an arbitrary factor of %, it is clear from the expansion (2.1) that cp/

divides (p5m, where gm(x) gm(x, A). Since m ^ n it follows that m n

(i.e. p X n) and f(x) gn{x, A) + y f°r some y, as required.
For even values of q we modify the above to take account of the theory

of the quadratic in characteristic 2. In particular, the splitting field of Qx

is Kt t= Fq(x, 9J, where

+ b2x +
K1 + C)2*2 + b\

>1 + ©1 „ ,2..2 ,2 81 ' SaY '

and, similarly, that of Q\ is K\ Fq(x, 0^), where

0,2 Û, CCC2 + M + Ci) s,Ö1 + Ü1 ~7Z c. 2 7 9 Ö1

Since K\ K then, by (3.3), + Ax~2 r2(x) + r(x) for some r(x) in
Fq(x). This alone can be checked to imply, in turn, that b2 0 and then
b1 0. Further comparison of and A/x2 yields ÇXÇ2 1 and

ci Ki +C,[1)2A. As in the other subcase, this data suffices to complete
the proof when q is even.

(ii) a 2, q odd. We show that in this case / is essentially a sub-linearised
polynomial. Our first claim is that it suffices to prove that

f(x) S(x+ ß) + y

for some (p, 2)-polynomial S over Fq and ß, y in F?. For assuming this to
be the case, we have
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f(x) - y (x + ß) {(x + ß)(pk~1)/2 + ^(x + ß)^1"1^2 + ...}2,

where 0 < i < k and at(^0) g Fg. Expanding, we obtain

f(x) — Y + 2aiXipk+pl)/2 + bxipk~pl)/2 +

where

g
+a2k_it if

(2a^pl, otherwise,

and the index in x of any term not shown is strictly smaller. Since

/(x) g Fg(x) it follows, in every case, that at e Fq and hence that ßpI and ß

are in Fq. Our claim is therefore justified and we can proceed to work
in Fq.

Take (3.2) in the alternative form

6(x, y) (y-x)2 - 2h(j/ + x) + c, b{^0), c g Fq

Indeed, replacing /(x) by /(x + ß), where ß (b2 — c)/4b, we may suppose
that c b2. The splitting field of Q (and therefore every factor of (p/)

over F/x) is thus Fq(y/x). Let

Qifay) (y-£>ix)(y-£,2x) + -
where ^ and C,2 are rath roots of unity, be any (quadratic) factor of (p/.

For Qx to have splitting field Fq(y/x) too it is necessary that C)1 Ç2 Ç,

say. Provided Ç + 1 it follows that y — C,x appears with an even power in
the factorization of yn — xn, contradicting the fact that n is odd. Thus
Ç 1, m 1 and n pk, a power of the characteristic. We may therefore

write

Qi(x, f) iy-x)2 - 2(b1y + b2x) F,.
The splitting field of Q1 is Fq(x, s/(2(bi+b2)x + bl — cl). Hence # —

and b\ c1. Similarly, the splitting field of the paired factor ßi(y, x) is

Fg(x,]/(2(bi + b2)x + bl-Ci) which implies that bx b2 (since bx + - b2).

Accordingly, with N \(n— 1) and some relabelling of subscripts,

<p j{x,y)n {{y-xf - 2bi(y+x) + >

i — 1

where h,- eF,,i 1,N. Setting B, ^/h;, i 1,IV, we obtain

<P/(*2,J;2) (y2-x2) n {y-x-Bi)(y-x + B
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In other words, f(x2) is a factorable polynomial of degree 2pk. The only

possibility permitted by [1], Theorem 1.1 is that f(x2) L2(x) + y for a

linearised polynomial L and y eFç. This is equivalent to the stated result

and hence the proof is complete.

4. Substitution polynomials with a cubic factor

In analogy to the previous section, let f(x) be an indecomposable

polynomial of degree n in F^[x] for which cpf(x, y) is divisible by an

irreducible cubic polynomial ß(x, y) in Fg[x, y]. Unfortunately, however,

Lemma 3.1 does not generally extend and, consequently, the crucial Lemma 3.2

cannot be applied. On the other hand, the study of primitive groups
whose point stabilisers possess an orbit of length 3, initiated by Sims [10]
and completed by Wong [14], becomes available, with the extra proviso
that / must be supposed to indecomposable over the algebraic closure Fq

(i.e., Gal (/(y) — z/Fq(z)) is primitive). This is probably a negligible assumption
— I do not know of any polynomial that is indecomposable over Fq yet
decomposable over Fq — but it is required for application of [14] to be

made.

Let G and G be the Galois groups of /(y) — z over Fq(z) and Fq(z),

respectively. Wong [14] distinguishes nine possible classes (labelled (l)-(9))
for the primitive group G. We shall summarise some implications for the
factorization of cp/ and the existence of EPs but are largely silent on
whether a particular permutation group can ever be realised as G or G.

A handy summary of the group-theoretic background is [4] which cites much
relevant literature such as [3], [6], [9].

Fundamental to the concept of a primitive permutation group is its
socle which is the subgroup H generated by all its minimal normal
subgroups. For us, necessarily H ç G ç G. At a basic level, socles are
distinguished according to whether they are abelian or non-abelian.

Groups with abelian socle (affine groups) have prime power degree and H
is an elementary abelian p-group. Here, in our situation, by [5], p is

truly the field characteristic unless / is a cyclic or Dickson polynomial
which is ruled out by §2. Of the nine classes in [14], just (1) and (2)
have abelian socle and then G is an extension of the cyclic group Zp by
Z3 °r of Zp x Zp by Z3 or S3. Now for p 1 (mod 3) there are (p, 3)-
polynomials of degree p or p2 (indecomposable simply over Fq) with such a
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