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THE POMPEIU PROBLEM REVISITED

by S.C. BAGCHI and A. SITARAM

ABSTRACT. One of the central results connected with the Pompeiu
problem is a theorem of Brown, Schreiber and Taylor. Using some old
work of the authors on spectral synthesis, a proof of this result is given.
Though separately dealt with, it is shown that some of the main results
for the Pompeiu problem for non-Euclidean symmetric spaces can also be
treated in the same spirit. In all the cases the role of representations of the
underlying group of isometries is highlighted. This point of view leads to
some new results for the Pompeiu problem for two sided translations on the
non-commutative groups SL(2, R) and M(2). Finally, a brief discussion is
provided for some related problems.

1. INTRODUCTION

Let X be a locally compact Hausdorff space and G a group of homeo-
morphisms of X each of which leaves a given non-negative Radon measure
p invariant. The central theme of this article is what is known in the
literature as the Pompeiu property: a relatively compact measurable subset

E < X is said to have the Pompeiu property if for a continuous function f
on X,

(1.1) J fx)dux) =0 forall geG

implies f = 0.

The Pompeiu property in a wide variety of settings and its relation
to other problems have been the subject-matter of a large number of
investigations beginning with two articles by the Roumanian mathematician
D. Pompeiu in 1929 ([18], [19]). In the first paper ([18]) the set-up was
essentially X = R? with the Lebesgue measure p and G the group R?
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acting through translations, where the unit disc D < R? was claimed to
have the Pompeiu property. We need only to look at the Fourier-Laplace
transform of the characteristic function 1, of the disc D to see that if a
1s a zero of the Bessel function J,, then f(x,y) = sinax 1S a nonzero
function satisfying (1.1). In fact, it was later realised that no bounded subset E
has the Pompeiu property, for this set-up (see [12], Theorem 4.3). However,
as already seen in the second paper of Pompeiu ([19]), the problem
becomes more meaningful, even hard, if either G is replaced by a larger
group or further restrictions are imposed on f in condition (1.1).

The basic paper in the theory is, however, the 1973 work of Brown,
Schreiber and Taylor ([12]), who considered X = R?* with Lebesgue measure
and G = M(2), the Euclidean motion group (which, they point out, is
no different from the more general setting of X = R” and G = M(n)).
They show that the Pompeiu property is closely related to the work of
L. Schwartz on mean periodic functions ([23]) — a key observation for their
and subsequent work on this theme. Their main result states that E has
the Pompeiu property if and only if the Fourier-Laplace transform of the
characteristic function 1,

~

(12) 1E(Zl > ZZ) = J' e—i(t121+t222) dtldtZ > (Zl > ZZ) € C2
E

does not vanish identically on any of the varieties
M, = {(z;,2,)eC*:z1 + z5 = a*}, O0#aeC.

By direct computation, these authors are able to verify condition (1.2) for
all proper ellipses: thus E = {(x, y): x*/a* + y*/b*> < 1} with ab # 0, a # b
has the Pompeiu property. Such direct computation can work only for
sets with rigid geometric properties. Brown, Schreiber and Taylor have a
general result: a bounded simply connected domain whose boundary has
" a “corner” has the Pompeiu property ([12], Theorem 5.11; see Section 3 for
a precise statement). Triangles, parallelograms and polygonal figures thus
have the Pompeiu property.

Another formulation of the problem (see [3], [33], [34]) is that, if E is
a simply connected bounded domain with a Lipschitz boundary, then condi-
tion (1.2) holds if and only if there is a complex number o # O such that
the over-determined boundary value problem

AT +oaT =0 on E

(1.3) T = constant # 0 on 0E,0T/on =0 on OE
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has a solution. S.A. Williams ([34]) used (1.3) to show that if E fails to
have the Pompeiu property then OE is real-analytic. In yet another develop-
ment C.A. Berenstein showed that if E is a simply-connected bounded
domain with smooth boundary and iE vanishes on an infinite sequence of

varieties M, , M,_, .., then indeed E is a disc (see [3]).

o2

In the more general setting of a Riemannian symmetric space with the
associated Riemannian volume measure and G a group of isometries, the
problem has been studied in depth by Berenstein and Zalcman ([9]) and
Berenstein and Shahshahani ([7]). Here again, the question reduces to one
of spectral analysis in Euclidean spaces. Since Schwartz’s theorem holds in
dimension one only, definitive results could be obtained for rank-1 symmetric
spaces alone. The differential equation approach has been fruitful in this
case also.

In this paper we present a brief survey of the development outlined
above. Apart from the original paper of Brown, Schreiber and Taylor ([12]),
a proof of their main theorem can also be found in Berenstein and Zalcman
[9] as a particular case of their more general set-up. In this paper we give a
proof of the main theorem of Brown, Schreiber and Taylor and its analogue
for non-compact symmetric spaces in line with our approach to the problem
of spectral analysis in [1]. This, we believe, has the merit of being more
transparent, at least for the somewhat less general form of the theorem
that we consider here. Our proof also provides an application of the main
results in [1]. We are also able to treat some analogous results of Berenstein
and Zalcman ([9]) for symmetric spaces of the compact type in the same
spirit. We then consider the Pompeiu problem in the context of the group
SL(2,R) and M(2) and derive some results based on their representation
theory.

The paper is organised as follows. Instead of trying to unify the treat-
ment of the problem for the symmetric spaces of the three types (compact,
non-compact and Euclidean) we choose to present them separately: the
spaces of Euclidean type in Section 3, those of non-compact type in
Section 5 and the compact case in Section 6. We take care, however, to
stress the basic similarity and to bring out the role of the so-called class-1
representations in each case. In Section 2, we discuss spectral analysis of
radial functions on R" — for use in Section 3. In Section 4, we discuss
a conjecture which remains a major open question in the theory. In Section 7,
we consider what can be called the Pompeiu problem on groups — an
area that remains largely unexplored yet. Finally, in Section 8, we try to
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provide a brief survey of the literature on some allied problems. Though
extensive, our bibliography is far from complete. We refer the reader to the
bibliographies in [9], [12] and [35].

2. SPECTRAL ANALYSIS OF RADIAL FUNCTIONS

We denote by &(R"), the space of C® functions on R” with the usual
topology and by &'(R"), the dual space of distributions of compact support
with the strong topology — both Fréchet-Montel and hence reflexive spaces.
CX(R") 1s the space of C*-functions of compact support. For a space of
functions or distributions %, we denote the usual action of an element o of
the orthogonal group O(n, R) by the notation f — f°. %, will stand for
the space of those f € # which are invariant under O(n, R), i.e, f° = f
for all o€ O(n, R). &'(R"),,q 1s a closed subspace of & (R") and the spaces
é(R"),,q and &'(R"),,4 are (strong) duals of each other. In the case n = 1,
even functions are the analogues of radial functions and we write &, to mean
& ..a- Though our considerations in this section hold for all n > 2, we
shall restrict ourselves to the case n = 2 to keep the exposition simple.

We start with a slightly weaker version of the classical theorem of
L. Schwartz ([23]).

THEOREM 2.1 (L. Schwartz’s theorem on spectral analysis). Let % be a
nontrivial closed subspace of &(R), which is closed under translations, then

hx - for some A e C.

d contains an exponential function e

As pointed out in [1] an immediate corollary of the theorem is: If %
is a nontrivial closed subspace of &(R), which is closed under convolution
against all T € &'(R),, then % contains a function of the form V,(x)
— (ei)»x_}_e—i?\x)/z-

We now introduce a family of functions on R? which is central to
spectral analysis of radial functions. For A € C, define

Pu(x) = J e M- Mdyw x e R?
[wj=1

where the integral is with respect to the normalised Lebesgue measure on
the unit circle. Here x.w is the usual inner product. It is immediate that
¢, is a radial function for each AeC. For fe CPR?,,q, we define a
transform (sometimes called the Bessel transform):
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G0 =J o) f()dx, reC.

We see that if f is the Fourier-Laplace transform of f e CQ(R?), ie,

A~

f(z1,25) = J e I f(x)dx, z = (z1,25)€ Sl
" RZ

then we have

2.1) G = fA0), heC, feCPRY) .

Both the transforms % defined above and the Fourier-Laplace transform
have their obvious extension to &'(R?),,s. We have for T € &'(R?),.q,

GTN) = T(d), reC
T(z,,2,) = Tle.), zeC?
where e (x) = e {Frx1t22x2) — =iz %) We again have

4T = T, 0), reC.

By applying the Paley-Wiener theorem we are able to obtain a description
of the function space & = {¥4T: T € CP(R?),.4}-

LemMMA 2.2. & is the space of even entire functions f on C such that
for some constants, ¢, N and A (depending on f),

| fO) | < CA+[A)Net™M  HeC.

Proof. By the Paley-Wiener theorem an entire function ¢ = T for some
T € &'(R?),,4 if and only if for some C, N, 4 > 0,

| 0(z) | < C(1+|z|)Vem=l
and
d(z) = d(oz)

for all z = (z;,2,) € C* and o€ SO(2, R) (here Im z = (Im z,, Im z,). The
latter condition is equivalent to saying &(z) = ¢(z') whenever z2 + z2
= z}* + z4*. To see this, consider, for each o € C,
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If o # 0, M, is a connected analytic submanifold of C? of complex dimension 1
and SO(2,R) (o, 0,...,0) is a real submanifold of M, of dimension 1 on
which the analytic function ¢ is given to be constant. This forces ¢ to be
a constant on M,. A modification of the argument is necessary for o = 0.

The lemma now follows from the simple observation thatif A> = z1 + z3,
then (Im A)* < (Im z,)* + (Im z,)? and from the relation 2.1.

A straight-forward application of the one-dimensional Paley-Wiener
theorem for even distributions of compact support will show that Z is also
equal to

{TA”: T € &'(R),} .
This identification allows us to define the linear map X by
2 'R, — &R,
D"\ =9TA), reC.

> is one-to-one and onto. Moreover, we have the following description of
the strong_ topology in & "(R?) (see [12], prop. 2.1): T, — T if and only if
(1) T ST uniformly on compact sets along with the derivatives and
(1) T,,, n > 1 satisfy the uniform Paley-Wiener condition:

| T,(2) | < C(L+lz)Vetlm=l, zeCm.

for some C, N, A > 0. This description coupled with the observation in
the last step of the proof of Lemma 2.2 gives that X is a topological linear
isomorphism between &'(R?),,, and &’(R), preserving convolution.

On using the reflexivity of &R), and &(R?),,, we now get the map 5.

2: E(R?),0q — 6R),,
<XT),2(f)> = <T, f> TeER)g, f€ERY)g

where < -,- > is the pairing of dual spaces.
We now have the following useful lemma:

LEMMA 2.3. With the notation above, we have
X(T) * 2(f) = X(T*f)

for all Te&RY,.q and feER?).,q, where = denotes the usual
convolution on R?.

Proof. Let S € &'(R?),,4. Consider
<3(S), (X(T)*Z(f))>
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= 3(8) * (Z(T)=Z(f)) ¥ (0)
(where gV (x) = g(—x), g € ER?), x € R?),

= 2(8) * () *2(T)") (0)
= X(S) * (E(f)*=(T)) as X(T), Z(f) are even
= X(S) * (Z(T)*Z.[) (0)
= <Z(SxT),Xf>
(using ZS * 2T = ZS* T)
= <8T, [ >
= ST = f(0) asf is even
= <§, Txf>.

On the other hand,
<3(S), XUT*f)> = <S8, T*f> .

The lemma is proved.

Finally, we come to the main result of the section: the spectral analysis
theorem for radial functions. As we remarked in the introduction, the
development in this section is along the same lines as in [1] where the
corresponding result for rank-1 non-compact symmetric spaces is proved.

THEOREM 2.4. Let ¥ be a closed nonzero subspace of &(R?)..q4 such
that for all Te&'(R?),,y and fe¥,T* fe¥. Then there exists heC
such that ¢, € 7.

Proof. Consider the closed and nontrivial subspace M of &(R), such that
(7)) = M. By Lemma 2.3, M is closed under convolution with elements
S e &'(R),. By the remarks following Theorem 2.1 now, there exists A e C
such that the functions ¥, € M, where ¥,(x) = (e**+e~™)/2, x € R. A simple
calculation now shows

<, > = <¥,Zf> feClR),4 <= ER?
Thus £¢, = Y, and hence ¢, € 7.

rad -

3. POMPEIU PROBLEM FOR THE M(2) ACTION ON R?

The Euclidean motion group M(2) is the semidirect product of R? with
the rotation group SO(2, R).
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M(2) = {(x, 5): x € R, o € SO(2, R)}

where
(x, 0) (¥, 0') = (x+0oX, 605

is the group multiplication and an element (x, o) acts on y € R? by the rule
(x,0)y = oy + x.

Let E be a relatively compact subset of R? of positive Lebesgue measure.
If /e C(R?), the space of continuous functions on R?, the vanishing of the
integrals

J f(x)dx = 0, forall ge M(2)

gE

1.e. J f(x)dx = 0, forall ceSO2,R), yeR?
GE+y '

can be restated as f * IGE = 0, for all 6 € SO(2, R) or, equivalently f° IE =0
for all o € SO(2, R), where f°(x) = f(ox) and 14(x) = 14(—x), x e R%. We
write

U ={feERY): fox1, =0 forall oeSOQ2,R)}.

From elementary smoothing arguments, it follows that E has the Pompeiu
property if and only if % = {0}. % is a closed subspace of &R?*) which is
invariant under translation and rotation. Let again

¥ = {f € ERY)pq: f * 1z = 0}

Then ¥~ < %, v is a closed subspace of &[R?),,q and T *¥ < ¥ for all
T e &'R?),,q4-

We now prove the main theorem of [12] mentioned in the Introduction.
(However, we restrict ourselves to indicator functions of sets, rather than
general distributions of compact support.)

THEOREM 3.1 (Brown, Schreiber and Taylor). A relatively compact subset
E < R? of positive Lebesgue measure does not have the Pompeiu property
if and only if there exists o€ C,o # O such that

14(z,,2,) = 0 whenever z3% + z3 = o?,

where IE is the Laplace-Fourier transform of the characteristic function 1g
of E.
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Proof. The if part is immediate; for instance, take any z = (z, z,) such
that z2 + z2 = o2 and consider the function ¢” *. To prove the only if part,
suppose E has the Pompeiu property. Let % and ¥~ be defined as above; by
assumption we have % # {0}. We shall now prove that ¥~ # {0}. Choose
f e with f(0) # O (this is possible as % is translation-invariant). Define

h(y) = J floyds, yeR?.
SO(2,R)

As % is SO(2, R)-invariant, the function he%. Further, h is a radial
function by definition, so h e ¥". But then h(0) = f(0) # 0. Thus ¥~ # {0}
and by Theorem 2.2, we have A e C such that ¢, € #". Further, ¢, is the
constant function and hence ¢, cannot belong to ¥ < %. So A # 0 and
o, € ¥~ and, in particular, ¢, * IE(O) = 0. In the notation of Section 2, this
means %15(A) = 0 and hence 1 A, 0) = 0. The SO(2, R)-invariance of %
now shows that IE vanishes on SO(2, R) (A, 0). The analyticity argument
in Lemma 2.2 will now prove that 1E vanishes at all (z;,z,) where
z} + z3 = A% This proves the theorem.

The condition in Theorem 3.1 can also be given a representation theoretic
interpretation in terms of the so-called class-1 principal series representation
of M(2) — see Section 7.3 for a more precise statement. As we remarked
earlier, the condition of the theorem is verifiable only for sets having
strong geometric properties. We quote two results from [12] without proof.

' THEOREM 3.2 (Brown, Schreiber and Taylor). The ellipse

2 2
E = {(x,y)eRZ:—2—+g—2—< 1}

a

has the Pompeiu property if and only if a,b > 0 and a # b.
When a = b > 0, D is the disc and we have

1p(z1,22) = const. J1([/z2 + z2) /| 22+Zzs (z1,22) e C?,

where J, is the Bessel function. Since there are infinitely many zeros of

J1, D does not have the Pompeiu property. The next theorem, obtained
through a careful estimate ([12]) needs a definition.

Definition 3.3. Let I' =T(¢), — 1 <t <1 be a Lipschitz curve in R2
with well defined (a.e.) unit tangent vectors 7(¢) = I"(¢) /|I"(¢)]. The point
p = T(0) is a corner of T if both the right and the left limits of 7(¢) as t — 0
exist and are not multiples of each other.
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THEOREM 3.4 (Brown, Schreiber and Taylor). Let Q be a compact
connected subset of R?. Suppose that there is a half-plane H and a unique
point pe QN H of maximal distance from the boundary 0H of H. If the
boundary of Q near p is given by a Lipschitz curve with a corner at p
then Q has the Pompeiu property.

Let now Q be a bounded Borel subset of the plane of positive measure
and suppose that Q does not have the Pompeiu property. By Theorem 3.1,
1, vanishes on the algebraic variety M, = {(z1,25):27 + 23 = o} for
some o # 0. As observed in [33] and [34], 1o/(z2+2z2—0?) is now an
entire function and standard Paley-Wiener theorem yields the following
proposition.

ProposITION 3.5. If Q is a bounded Borel subset of R?* of positive
measure Wwith IQ vanishing on M,, o # 0, then the function ¢(z,, z,)
=1q/ (Zf + Z% —a?) is an entire function on C? which is the Laplace-
Fourier transform of a distribution of compact support.

Proposition 3.5 immediately gives rise to a partial differential equation.
For, if T is the distribution whose Fourier transform is g, then from

(Z%—I—Z%—ocz)g(zl, zy) = lolzy, 2,)

we have
(3.1) AT + &*T = — 1,

where A is the Laplacian. Conversely, if there exists a distribution T of
compact support satisfying the equation (3.1), then ig vanishes on M, and
hence Q does not have the Pompeiu property. We also remark that if Q is,
further, a bounded simply connected open set and the equation (3.1) has a
solution, then o? is necessarily a positive real number as can be seen from
a simple Green’s theorem argument (see [34] for a proof). The equation
has been studied in [3], [33] and [34]. In [33] it was proved that a
solution of (3.1), if it exists is actually a function. We shall discuss some more
of these results in the next section. We end the present section by quoting the
main theorem of [34]. This result extends Theorem 3.4 and, barring sets of
rotational symmetry all known sets failing to have the Pompeiu property
are covered by this result. For a bounded subset Q = R? we denote by
0*Q the boundary of the unbounded component.
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THEOREM 3.5 (S. A. Williams). Let Q be a bounded open subset such
that the equation AT + o*T = — lg has a function solution of compact
support for some o > 0. Let R,K,L be positive real numbers such that
L > KR. Assume that for Pe€d*Q there exists a coordinate system (X, y)
around P so that

i) O = (—R,R) x (—L,L) intersects 0Q in the graph y = f(x) of

a Lipschitz function f with Lipschitz constant K, and
) 0nQ ={(xy:]|x| <R and f(x) <y <L}
Then f is real analytic in a neighbourhood of P.
Thus if we restrict ourselves to the class & of simply connected bounded

open sets with Lipschitz boundary then Q € & can fail to have the Pompeiu
property only if 0Q is real analytic.

4. A LONG-STANDING CONJECTURE !

The following Conjecture has received quite some attention in the literature

([31, [101], [34]).

Conjecture. 1If Q = R? is in the class & described above and if Q does
not have the Pompeiu property, then Q is a disc.

As pointed out before, the work of Williams shows that is is enough to
consider Q with dQ real analytic. For Q € &, the existence of (a necessarily
positive) a? for which (3.1) has a distribution solution of compact support
i1s equivalent to the existence of a positive y for which the following
overdetermined system has a solution.

(4.1) AT +yT =0 on Q
T = constant #0 on 0Q,0T/on =0 on 0Q

(see [34] for details). Thus the conjecture can be stated as follows:

If for Qe 2, there exists ¥ > 0 for which (4.1) admits a solution, then
Q is a disc.
It is remarked in [34] that the conjecture is closely related to a result of

Serrin ([25]): If Q is a bounded connected open set with smooth boundary
on which

Au= —1 on Q
u = 0,0u/0n = constant on 0Q

has a function solution, then Q must be a disc.
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We now state two partial answers to the conjecture that seem to support
the conjecture.

THEOREM 4.1 (Berenstein [3]). Let Q be a simply connected bounded
open subset of R* with C**¢ boundary, where ¢ > 0. Assume that the
boundary value problem (4.1) has solutions for infinitely many positive v,
then Q is a disc.

We need some notation for the next result due to Brown and Kahane
([10]). Let Q be a convex bounded open connected subset of R? For
0 < 0 < m, let ©(0) be the distance between the two parallel support lines for
Q2 which make an angle 6 with the positive real axis. We assume 0D is
smooth so that ® is a continuous function. Let

m(Q) = inf{0(0):0 < 6 <n} and M(Q) = sup{@(0):0 < 0 < 1}.

THEOREM 4.2 (Brown and Kahane [10]). Let Q be a convex region of

1
R? with 0Q real analytic. If m(Q) < EM(Q)’ then € has the Pompeiu

property.
We remark that the proof of this Theorem is elementary and very
elegant.

5. POMPEIU PROPERTY IN NON-COMPACT SYMMETRIC SPACES

Let G be a connected non-compact semisimple Lie group having finite
centre and real rank 1. Let K be a fixed maximal compact subgroup of G.
The space G/K is then a globally symmetric space of the non-compact
type of rank 1. G/K is equipped with a natural Riemannian structure
with respect to which G acts as a group of isometries and the associated
Riemannian volume element p is G-invariant. The basic results for the
Pompeiu problem in this set-up are due to Berenstein and Zalcman ([9], [4])
and Berenstein and Shahshahani ([7]). In [9], the Fourier-analytic charac-
terisation of a set — in fact, more generally, a collection of sets — having
the pompeiu property is obtained and some explicit computations are made
for geodesic spheres. In [7], the Pompeiu problem is reduced to an eigen-
value problem as in Section 4 and the analogue of Williams’s results is
obtained. We shall mainly present here a result implicit in the work of
Berenstein and Zalcman as well as Berenstein and Shahshahani from our
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point of view of spectral analysis developed in [1]. It is to be noted that
the close connection between the Pompeiu problem and spectral analysis is
also developed in [4]. Our treatment, however, is different in that it relies
on the results of spectral analysis in [1].

Let G = KAN be the Iwasawa decomposition of G. Let ¢ be the Lie
algebra of G, o/ the Lie subalgebra of ¢ corresponding to A. Since G
has rank 1, ./ is 1-dimensional. Using the linear functional p on 7,
which is the half-sum of the positive roots for the adjoint action of &/
on ¥, we write the real dual .«/* of o/ as «/* = {tp,teR} and its
complexification o/ ¥ = {Ap, A € C}. For A € C, we denote by ¢, the elemen-
tary spherical function associated with Ap € o7 *. (These functions essentially
parametrize the so-called class-1 representations of G.) The Weyl group in
this case is the group of order 2 generated by the reflection Ap — — Ap
and we have ¢,, = ¢, ifand only if L = XM or A = — A\

For A € C and k a non-negative integer, we write

Gy, (x) = d"/dM dy(x), x€G;

in particular, ¢, o = ¢,. The functions {¢, ,} are K-bi-invariant, i.e.

Oy i(kgx) = &, 4(g9), xeK, geG.

We denote by & = C®(K\G/K) the space of all K-bi-invariant C*-functions
on G, with the topology of uniform convergence on compacta along with
“derivatives”. By & we denote the dual space of &, the space of K-bi-
invariant distributions on G of compact support. A closed subspace % < &
is called a variety if T * f € %, whenever T € & and f € % (here * denotes
convolution in G). The main theorem of [1] can be stated as follows:

THEOREM 5.1. Let % <= & = C®(K\G/K) be a variety. Then U is the
closed linear span in & of the subset {¢, ,:AeC,k>0,¢,,€}. In
particular, if % is nonzero, then there exists AeC such that &, €.

We point out that the main ingredients of the proof of Theorem 5.1 are
Schwartz’s theorem on mean periodic functions on R, and the topological

isomorphism of C(K\G/K) with a space of entire functions through the
spherical Fourier transform

f= = J JEx"Ndx, [ e CAK\G/K).
G

The details of this topological isomorphism are also available in [4].
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The spherical functions {¢$,: A € C} are intimately related to the class-I
principal series representations {IT,: A € C} of G. These representations are all
realised in the space L*(K/M) (with normalised Haar measure dk; here,
M 1s the centraliser of A4 in K). In fact, for g € G the operator IL(g) is:

IL,(g) (F) (k) = ™~ PR NF(k(g~ k), Fel*K/M), keK

where for any ye G,y = «k(y) exp H(y)n(y) is the Iwasawa decomposition
of y with exp denoting the exponential map: «Z — A. Then, ¢,(9g)
= <Il(9)1,1>,g € G, where 1 is the constant function in L?* K/M) and
< -, > stands for the inner product in L*(K/M).

For a function f on X = G/K, we shall denote by f the right
K-invariant lift of f on G: f(g9) = f(gK). Similarly, if E < X, we write
E = {ge G:gK € E}. As before, if f is a function on G, we denote by f

the function

fl@=flgh, geG.

Note that f G f (9)dg = jX f(x)du(x) where p is the volume element on G/K.

We are now in a position to state and prove the main theorem of this
section which is implicit in the work of Berenstein and Zalcman ([9]) and
Berenstein and Shahshahani ([7]), though not stated in this form.

THEOREM 5.2. A relatively compact measurable subset E of X of
positive measure has the Pompeiu property if and only if

def

IL(1g) = f~ I1,(g) dg

is a nonzero operator for every A e C.

Proof. Given E < X as in the statement, we notice that for
f e C*(X), ngf = 0 for all g € G is equivalent to the condition f * 13 = 0.
Define

U = {he C®(G): higk) = h(g) forall geG,keK, and h*1z = 0}.

Notice that % is a closed subspace invariant under left translation by
elements of G. Then E has the Pompeiu property if and only if # = {0}.
Writing ¥v* = % n & (ie., ¥ is the space of K-bi-invariant functions in %),
we claim that % = {0} if and only if ¥~ = {0}. First, if % # {0}, choose
f €% such that f(e) # O where e is the identity element of G. Now for
such an f, define the function h by
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h(x) = J f(kx)dk, xe€G.

Since % is translation-invariant, h e %. On the other hand h is K-bi-
invariant. So he ¥ < «. But h(e) = f(e) # 0. It is now easy to show
that ¥ is a variety and by Theorem 5.1, ¥~ # {0} if and only if for some
reC, b, e? .

Suppose now IT(1z) = 0 for some A e C. We have for all g e G,

IL(IL(1g) = J‘_ IT,(gx)dx = 0.
E
Consequently,

<IL(gpIL(1x)1, 1> = J <IL(gx)1, 1 > dx
E

= % 12(9) = 0.

So ¢, € ¥ and hence E does not have the Pompeiu property. Conversely,
suppose E does not have the Pompeiu property. Then 7~ # {0} and hence
there exists A€ C such that ¢, € ¥°. Further, if A e€iR, then ¢,(x) >0
for all xe G and so ¢, ¢ ¥ as E has positive Haar measure. Thus A ¢ iR,
and then it is known that the representation II, is irreducible (see [7])
and we have, for all g €G,

b, * 13(9) = <IL(@IL1p)1, 1>
= <IL(1p)1, T}(g)1>
= <IL(1x)1, g ~H1>
= 0.

Since A ¢ iR, IT; is an irreducible representation; and hence 1 is a cyclic
vector for IT;. Our identity now implies IT,(15)1 = 0. But since I, is an
irreducible class-1 representation and 13 is a right K-invariant function, it
follows that IL(1z)F = O for all Fe L*K/M). (Here we use the general
fact that if II, is a class-1 principal series representation and h is a right
K-invariant function, then Il,(h) is completely determined by its action on
the constant function 1 on K/M. In fact, IT,(f) = 0 on the orthogonal
complement of 1 in L*(K/M).) Thus II,(1z) = 0, proving the theorem.
As in Fuclidean spaces, it is not possible to verify the condition of
Theorem 5.2 in very many cases. Theorem 5.2 may also be taken as a
starting point for considering the differential equations formulation of the
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Pompeiu problem as in Berenstein and Shahshahani [7]. We quote a main
result of theirs (their Proposition 3 and Corollary 1).

THEOREM 5.3 (Berenstein and Shahshahani). Let Q be an open relatively
compact subset of X = G/K such that X — Q is connected and 0Q
is Lipschitz. Assume that Q does not have the Pompeiu property. Then
0Q) is analytic.

It follows from Theorem 5.3 that, for instance geodesic triangles in X
have the Pompeiu property. On the other hand, Berenstein and Zalcman ([9])
as well as Berenstein and Shahshahani ([7]) point out that geodesic balls
in X do not have the Pompeiu property. In fact, Sitaram ([29]) proves
that if E is a relatively compact K-bi-invariant set and m(E) > 0, then E
does not have the Pompeiu property. As in R”, it remains an open question
whether the only sets with smooth boundary and connected exterior that
fail to have the Pompeiu property are the geodesic balls. Analogues of
Theorem 4.1 are also available for certain symmetric spaces (see [3] and [8]).

6. SYMMETRIC SPACES OF THE COMPACT TYPE

Let X be a symmetric space of the compact type, ie., X is of the
form G/K where G is a connected compact semisimple Lie group and K a
suitable closed subgroup. Then (G, K) is a so-called Riemannian symmetric
pair. G/K is equipped with a canonical G-invariant measure (see [15] for
details).

As in the previous section, we shall connect the Pompeiu property with
certain representations of the group G. We need only unitary irreducible
representations Il of G on finite-dimensional Hilbert spaces . Such a
representation IT is said to be a class-1 representation with respect to K if

there exists a vector 0 # ve s, such that for all ke K, II(kyv = v. For
(G, K) a Riemannian symmetric pair it is well known that an irreducible

representation IT is either of class-1 (in which case v is unique upto scalar
multiples) or IT does not admit any nonzero vector v such that IT(k)v = v for
all k e K (see [16], p. 412). We record two simple observations for a continuous
unitary irreducible representation IT of G: For f € L'(G), we denote by I1(f)
the operator II(f) = SGH(x)f(x) dx. So if f is either right or left K-
invariant, then II(f) = 0 provided I is not of class-1. If IT is class-1 and
0 # v, is a K-fixed vector for IT and f is right K-invariant, then IT(f) = 0 on
(Cup) t, i.e., TI(f) is completely determined by its action on vy. On the other
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hand, if f is left K-invariant, I1(f) maps J# into Cuv,. If, further, f is also
K-bi-invariant, then TI(f)vy = cpr- Vo where the constant cp,, can be
explicitly computed in terms of the so-called elementary spherical functions.
In fact, fix v, such that | v, | = 1 and let

O (x) = <II(xX) vy, Vo> .

Then ¢p is continuous, in fact, a real analytic K-bi-invariant function, called
the elementary spherical function associated with IT and now we have
ey = Joon(x)fx)dx.

The following simple result, which we view as the analogue of Theorems
3.1 and 5.2 for Euclidean and non-compact spaces respectively, is implicit in
the work of Berenstein and Zalcman ([9]), though not stated in this form. For
sake of completeness we give a sketch of the proof.

THEOREM 6.1. Let X = G/K be a symmetric space of the compact
type where G and K are as above. A measurable subset E C X of
positive measure has the Pompeiu property (for the usual G-action on X) if
and only if for all irreducible representation Il of class 1 of the group
G, 11 (1) # 0 (where E ={g:gKeE}).

Sketch of Proof: Suppose that E fails to have the Pompeiu property. So
there exists f e C(X), f # 0 such that ngf(x)dx =0 for all ge G. As in
Section 5, this means ]? *Vlg-—- 0. Now f is a nonzero right K-invariant
function and let IT be an irreducible representation of G such that I1( f ) # 0.
By an easy Peter-Weyl argument such a IT exists. By our previous discussion
then IT is a class-1 representation. We have

6.1) T(f * 1) = TI(f) - TI(15) = 0

We claim that H(vl 7) = 0. If not, since 1 £ 1s left-invariant, by our earlier
discussion again H(vl £) A= C - vy where v, is a nonzero K-fixed vector. But
then by equation (6.1), H(f)uo = (0 and hence H(f) =0 as f is right
K-invariant, which is a contradiction. Thus H(Vl £) =0. If now ﬁ(g)
= I1’(g "), i.e., the representation contragredient to IT, then I is again an
irreducible unitary representation of class-1. We have f[(l £) = 0 as desired.
The converse assertion is in fact easier and follows from the Peter-Weyl
theorem. This result is related to an analogue of the Wiener-Tauberian theorem
for compact symmetric spaces ([30]).

In the special case when E is invariant under the left action of K as well
the condition of the Theorem 6.1 reduces to a condition on the spherical
Fourier transform of 1. In fact, it follows from our earlier discussion (since
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1z 1s K-bi-invariant) that for IT irreducible of class-1, II(1z) = 0 if and only
if <II(1z)vg, vo> = 0 where v, is a nonzero K-fixed vector. In terms of the
elementary spherical function introduced earlier this is equivalent to saying

JG 15(g)$nlg)dg = 0.

Thus using earlier notation this is the same as saying ¢y ;; = 0. Finally, for
a left K-invariant set E < X, the condition of Theorem 6.1 is equivalent
to demanding ¢y ,; # O for all IT of class-1.

As an application we consider the case when E is the geodesic ball B,
of radius r about the identity coset eK € X. We work out the case of
S? = SO(3, R)/SO(2, R). The irreducible representations of class-1 of SO(3, R)
come from the decomposition

LZ(SZ) = & H,

k=0

where ', 1s the space of spherical harmonics of (homogeneous) degree k.
On each 4, we have the irreducible representation

Ig)f(x) = flg"'x) feH,, geSOB,R), xeS*.

We identify (1,0,0)e S* with the identity coset SO(2, R). The unique
SO(2, R)-fixed function in 5, 1s given by v,(x,, X,, x3) = P,(x;) where P,
is the Legendre polynomial of degree k (see [16], p. 404). Integrating first
on the parallels orthogonal to (1,0,0) and then with respect to 6 where
x; = cos 0, we get

C,,1; = j P,(cos0)sin 6dO = P, (r)
r O
by the properties of Legendre polynomials.

Summarising this discussion, we get the following particular case of the
general result of Berenstein and Zalcman ([9], Theorem 4) — where the
computation is shown for a general rank 1 symmetric space of compact

type.

ProrosITION 6.2 (Berenstein and Zalcman). A geodesic ball of radius r
on S?> has the Pompeiu property if and only if P,,.,r) #0 for
k=201,2,-.

See also the discussion in the section on compact groups in [24].
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7. POMPEIU PROPERTY FOR TWO-SIDED TRANSLATIONS
ON GROUPS

In this section we consider the Pompeiu problem in the setting where X
is one of the groups M(2) or SL(2,R) and the group action is that of
two-sided translations. We start with a general definition.

Definition 7.1. Let G be a locally compact unimodular group. A
measurable relatively compact subset E = G of positive Haar measure is
said to have the (two-sided) Pompeiu property if for f € C(G),

J f(x)dx =0 Vg,,9,€G
g1Eg>

implies f = 0 where the integration is with respect to the Haar measure.

Except for the two groups mentioned the problem in general appears to
be untractable at the moment, the primary reason being that there has not
been much progress with the related problem of two-sided spectral analysis.
If, however, we consider only functions f e LY(G) n C(G) the problem con-
sidered above becomes easier and some investigations have been made
in this restricted set-up (see [20], [21], [24]). Our treatment of M(2) and
SL(2, R) relies on the work of Weit ([32]) and Ehrenpreis and Mautner
([13], [14]) on spectral analysis and synthesis on M(2) and SL(2, R)
respectively. (See also [4], [31] in this connection.) ‘

§ 7.1. We introduce a class of representations of the group M(2). As in
Section 3, we write M(2) = {(x, 0): x € R%, o € SO(2, R)} where (x, 5) - (x/, &')
= (x+ox, cc’) 1s the group multiplication and an element (x, 5) acts
on yeR? by the rule (x,c)y = oy + x. Let e C,A #£ 0 and we define
representations IT, on the space L%(S!) where S' < R? is the unit circle:
for (x, 4) e M(2),

IL(x, A)f(w) = ™" f(47'w) feL*S), weSt,

where - is the inner product in R* The II’s are related to the repre-
sentations of M(2) on the eigenspaces of the Laplacian A on R? and are
irreducible (see [16], p. 12). If A is real, then II, is seen to be a unitary
representation. The only other irreducible unitary representation (up to
equivalence) of M(2) are the characters:

(6 A) = €™ xeRLA=( O 0 sinf
—sin® cosH
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wheren = 0, + 1, + 2, .
We now come to our result for the group M(2).

THEOREM 7.1. A measurable relatively compact subset E = M(2) of
positive Haar measure has the Pompeiu property if and only if

(i) the operators | Ah(x)dx # 0 for each heC,h #0;

(i) [ xa(x)dx # O for each integer n;

where the integrals are with respect to the Haar measure on M(2).

Proof. If Il is a continuous irreducible representation of G on a Hilbert
space and II(1;) = 0, then for a suitably chosen matrix element f:x —
<II(x)v,, v,>, we have fglEng(x)dx = 0 for all g,, g,. The only if part now
follows. To prove the if part we consider the two-sided ideal of C(M(2)):

U = {feC(M(2)):J fdx = 0 forall g,,g,eM(2)}.

g1Eg2

Assume % # {0}. We shall prove that either for some n, jEx,,(x)dx = 0,
or for some A # 0, Il(x)dx = 0. Since % # {0}, by Weit’s theorem
([32], Theorem 1), either y,e€ % for some n or there exists A = (A, A,)
e C? A2 + A2 # 0 such that the functions g,(x, A) = ¢ ®*17*¥)  where
(x, A) € M(2) (x=(x,, x,)), belongs to #. In case y,e# we immediately
get the desired result. So let for A as above, g, € . As noted by Weit
if p=(u,u)eC* and pi + p3 = A} + A3, then g,e%. We choose
A+ A3 cos0,p, = /AT + A3 sin 0 for some 6 € R, so that

gu(x, A) ='exp(i,/7v;‘ + A3 x.w), (x,4)e M(?2),

where w = (cos 0, sin 0). Since g, € % for all 0 e R and since % is closed,
we have h € % where

h(x, A) = J exp (i /A2 + A% x.wydw, (x, A) e M(2).
Sl

But h(x, A) = <II(x, A)1, 1>, (x, A) € M(2) where z = \/A? + A3 and so
we have

j <Il,(g)1,1>dg = 0
91Eg2

for all g,, g, € G. This means
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J <T,(g ), (9),(g2)1, 1> dg = 0, ¢1,9,€GC.
E
By taking adjoints and using the fact IT(g)* = T1-2(g '),
J <TL(gM(g,)L, TT_z(g; N1>dg =0, &,8€G.
E

Since IT. and II_: are irreducible, 1 is a cyclic vector in L2(S!) for both
these representation and it will, therefore, follow

J <II,(g)u,v> dg = 0
E

for all u, v e L?*(S*). This shows that I1,(1z) = O and the theorem is proved.
§ 7.2. For simplicity, we consider the group
PSL2,R) = SL2, R)/{+ 1, — 1}

rather than SL(2, R) itself. For each A e C, SL(2, R) has the so-called prin-
cipal series representation IT, (which are continuous representations realised
on a Hilbert space). It is well known, that but for a countable set of A’s II,
is irreducible. Thus the set of representations {II,: X e C,II, irreducible}
along with another countable family of representations called the discrete
series and all irreducible finite-dimensional representations account for all
so-called ‘‘topologically completely irreducible’’ Banach representations (upto
equivalence) of PSL(2, R). We now state our theorem for PSL(2, R):

THEOREM 7.2. A relatively compact measurable subset E = PSL(2, R)
of positive Haar measure has the Pompeiu property if and only if for

each topologically completely irreducible Banach representation T1 of
PSL(2,R), I1(1z) # 0.

Sketch of Proof.  As with Theorem 7.1, the proof relies on spectral analysis
of two-sided ideals of C*(G) due to Ehrenpreis and Mautner ([13], [14]):
If 0 # % < C*(G) is a closed two-sided ideal in C®(G), then there exists
AeC and a nontrivial function of the form ¢} ,.:x - <IL(x)e,, e,,>
is in %. Here {e;} is an orthonormal basis of #,, the representation space
for TI, and moreover, I(kle; = x(k)e; where {x;} are the characters
of the maximal compact subgroup SO(2, R)/{+1, —1} of PSL(2,R) and
ke SO(2, R)/{+1, —1}. To prove the theorem, we define % as in Theorem 7.1.
If % # {0}, then appealing to the result quoted above we get bh . EU
for some L e C and n, m integers. If the corresponding II, is irredﬁcible,
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then the argument is as in Theorem 7.1 and we can prove II,(1;) = 0. If
I1, is not irreducible, then depending on n, m we can find a discrete series
representation or an irreducible finite dimensional representation IT occurring
either as a subrepresentation or as a subquotient of IT, for which IT(1g) = 0.
To do this, we need the exact G-module structure of IT, which in the case of
PSL(2, R) is available (see for example [14]).

§ 7.3. Consider the case G = R? and G acting on itself by translations.
In this case, Brown, Schreiber and Taylor have proved that there are no
Pompeiu sets ([12]). In view of this it would be natural to ask if there are
sets E satisfying the conditions of Theorem 7.1 at all. Identify R?* with
G/K where G = M(2) and K = SO(2, R); if E = G/K then one can show
that the condition of Brown, Schreiber and Taylor considered in Section 3 is
equivalent to the condition IT,(1z) # O for Ae C, A # 0. (A special case of
this observation is also made in [30]). Hence by the discussion in Section 3,
there are plenty of sets E with this property. As we have seen, topologically
G ~ R? x SO(2, R). We now observe that if E is chosen as above in R? and I
is a suitably chosen arc in SO(2, R), then the set F = E x I considered as
a subset of G satisfies IL,(1z) # O for all e C — {0} as well as y,(15) # 0
for all neZ. (We need only to choose I whose length is irrational
modulo 27.)

8. CONCLUDING REMARKS

In this paper, we have restricted our attention to the Pompeiu property
for a single set E. One can also consider the Pompeiu property for a
collection of sets or distributions of compact support as in [9], [12]. There
are also closely related properties such as the Morera property — see [12]
for details.

As pointed out earlier the Pompeiu problem becomes easier if one con-
siders only integrable functions. Investigations under this assumption have
been done, for example, in [2], [20], [24] and [28]. If one only considers
integrable functions one need not restrict oneself to relatively compact sets.
Moreover, considering integrable functions is equivalent to considering
finite complex measures. Thus for G a locally compact abelian group a Borel
subset E = G is said to be a determining set for finite complex measures if
for a finite complex measure p on G, u(gE) = 0 for all g € G implies p = 0.

For locally compact abelian groups it is easy to see that a set of finite
Haar measure is a determining set for finite complex measures if and only if
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the Fourier transform TE does not vanish on any nonempty open subset of
the dual group G. Thus bounded Borel subsets of R" of positive Lebesgue
measure are determining sets by the analyticity of 1 g. Classical quasi-
analyticity results apply to give conditions on the growth of an unbounded
subset E < R" to be a determining set. Settling a problem that was
open for some time, Kargaev ([17]) proved the existence of sets E = R" of
finite Lebesgue measure which are not determining sets for finite complex
measures.

The problem of determining sets has also been studied with the class
of probability measures replaced by other classes of measures, e.g., a class
of infinite measures with growth/decay conditions (see [22], [11] and [28]).
Also different groups of homeomorphisms acting on X have been considered
in these studies.

Finally, we refer to the following form of the support problem analogous
to the well known problem in the case of Radon transform. Let X be a
symmetric space (Euclidean, compact or non-compact). Let x, be a fixed
point of X. If E is a relatively compact subset of positive measure and if
ngf = 0 for all ge G with d(x,, gx,) > R what can one say about the
support of f with respect to the reference point x, ? (Here, d stands for the
geodesic distance.) Some partial answers to this question are known (see [26]
and [28]).

We have not addressed ourselves in this paper to the situation when X
is an infinite-dimensional Hilbert space or X is an arbitrary Riemannian
manifold. Another important problem we have not considered is the local
version of the Pompeiu problem. (For this, we refer the reader to [5] and [6]).
We have restricted ourselves to the situation of symmetric spaces and
locally compact groups and the relationship of the Pompeiu problem with
harmonic analysis and representation theory.
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