
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 36 (1990)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: YANGIANS AND R-MATRICES

Autor: Chari, Vyjayanthi / Pressley, Andrew

Kapitel: 2. Highest weight representations

DOI: https://doi.org/10.5169/seals-57909

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-57909
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


276 V. CHARI AND A. PRESSLEY

all k, l, m e Z+ If u U\ u2... un is any monomial in the generators of degree

n, define its index

ind(w) Yé

i<j

where

{0
if Uj -< Uj

1 if Uj -< Ui

Using Lemma 1.7, each monomial can be written as a sum of monomials
of smaller degree, or smaller index, and hence, by an obvious induction, as

a sum of monomials of index zero.

2. Highest weight representations

By analogy with the definition of highest weight representations of semi-

simple Lie algebras, one makes the following

Definition 2.1. A representation V of the Yangian Y is said to be highest

weight if there is a vector Q e V such that V YQ and

xk Q 0, hkQ dkQ, k 0,1,

for some sequence of complex numbers d (do, d\, In this case, Q is

called a highest weight vector of V and d its highest weight.

Remark. It follows immediately from Definition 1.1 that the assignment

xhi for x e $I2 extends to a homomorphism of algebras i: U{%\2) Y. By
Proposition 2.5 below, i is injective. Thus, any representation of Y can be

restricted to give a representation of §{2> In particular, we can speak of
weights relative to %\2 as well as relative to Y. It will always be clear from
the context which type of weight is intended.

As in the case of semi-simple Lie algebras, there is a universal highest

weight representation of Y of any given highest weight:

Definition 2.2. Let d (d0, d\, be any sequence of complex
numbers. The Verma representation M(d) is the quotient of Y by the left ideal

generated by {x^,hk-dk1 }keZ+.

Proposition 2.3. The Verma representation M(d) is a highest weight

representation with highest weight d, and every such representation is
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isomorphic to a quotient of M(d). Moreover, d) has a unique

irreducible quotient V(d).

Proof. Only the last statement requires proof. We consider M(d)
as a representation of $I2. By Proposition 1.11, the <i0-weight space

{u eM(d): h0.u d0u} is one-dimensional, and spanned by the highest

weight vector leM(d). Thus, if Mx and M2 are two proper subrepre-

sentations of M(d), then Mx + M2 is also proper. It follows that M(d) has a

unique maximal proper subrepresentation.

The question of which highest weight representations are finite-dimensional

was answered by Drinfel'd in [5, Theorem 2]. His result may be stated as

follows.

Theorem 2.4. (a) Every irreducible finite-dimensional representation of
Y is highest weight.

(b) The irreducible highest weight representation V(d) of Y is finite-
dimensional ifand only if there exists a monic polynomial P e C [u] such that

P(u+ 1)

P(u)
— 1 + Yi dk u '

in the sense that the right-hand side is the Laurent expansion of the left-hand
side about u oo.

To construct examples of highest weight representations of Y, we need the

following result, which is an immediate consequence of the defining
relations (1.1).

Proposition 2.5. (a) The assignment x^x,J(x)i— 0 extends to a
homomorphism of algebras s0: f/($l2).

(b) For any a e C, the assignment x^x, J(x) i-> J(x) + ax extends to an
automorphism xa of Y.

By part (a), if F is a representation of $I2, one can pull it back by s0 to
give a representation V of Y. Pulling back this representation by xa then gives
a one-parameter family of representations V(a) of Y. Note that V(a) is an
irreducible representation of Y because s0 is surjective.

Let Wm be the (m + l)-dimensional irreducible representation of
$I2, me Z+. Then, Wm(a) has a basis {e0,...,emj on which the action of Y
is given by:

x +
• ei — (I + 1)£/ +1, x~ .et (m — i+ X)ei^x, h. c,- (2/ — m)el
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the action of J{h) (resp. J(pc±)) being a times that of h (resp. x±). To make

contact with the theory of highest weight representations, we need:

Proposition 2.6. The action of the generators hk, xk on Wm(a) is

given by:

I 1 1\*
a —m + i + - (i + l)e^

\2 2)
1 l\.e< I a—m + ; —\ 2 2/

II 1
• D'

e, { I a—m

+
— I

H 2 2/

- -m + i + - j (/ + 1) (m - oj

(1) xt.e^
\ L L J

(2) xk et | a - -m + / - - | (m - i + l)et-1 ;

(3) hk.ei= I a—m + i—) i(m - i + 1)

i. —m + i + - (/ + 1) (m - i)} et
2 2) J

Proof. It is straightforward to check, using the relations (l)-(3) in

Theorem 1.2, that these formulas do define a representation of Y. It therefore
suffices to check that they also give the correct action of the generators
h, J(h), a± J(x±). This is another straightforward computation, using the

isomorphism § in (1.2).

Corollary 2.7. (a) Wm(a) is a highest weight representation with

highest weight d {d0,di, given by

1 l\km\a + -m —I 2 2)
dk

(b) The monic polynomial P associated to Wm(a) is given by

I 1 !\ / 1 3\ / 1 M
P(u) - I u - a + -m - - J

I u - a + -m - - I I u - a - -m + - I

Proof, (a) It is clear that em is a highest weight vector for Wm(a) relative

to Y. The eigenvalues of the hk on em are as stated.

(b) By Theorem 2.4(b), the polynomial P is determined by

P(u+ 1)
=1 + £L<

P(u)
m

1 1

a + -m —
\ 2 2

k
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1 1

u - a + -m + -
2 2

1 1

u - a —m + -
2 2

The stated P clearly satisfies this equation.

In section 4 we shall need to consider the duals of the evaluation representations

Wm (a). If V is any finite-dimensional representation of Y, its dual V*

is naturally a representation of Yop, the vector space Y with the opposite

multiplication:

x.y(in Yop) y.x (in Y)

Moreover, Yop is a Hopf algebra with the same co-multiplication as Y.

Proposition 2.8. There is an isomorphism of Hopf algebras

0 : T - Yop such that

9(a) — x 0(T(a)) J(x)

for all x g §1? •

Proof. It is sufficient to prove that the assignment x - a, /(a) \-+ J(x)
extends to a homomorphism of Hopf algebras Y Yop. The relations in Yop

are obtained by inserting a minus sign on the right-hand side of relations (1)

and (3) in (1.1). The result is now clear.

Remark. The anti-homomorphism 0 : Y Y is closely related to the

antipode S of Y, which is given by

S(.a) - A S(J(x}) - J(a) + — CA
4

where c is the eigenvalue of the Casimir operator in the adjoint representation
of §I2 (which depends of course on the choice of inner product on êï2).

Thus, if Pis a finite-dimensional representation of Y, then F* is a representation

of Y with action

<>•/) (O)f(Q(y).u)

for y eY, ü e V and / e K*. Moreover, the fact that 0 preserves the co-
multiplication implies that (J^® K2)* V\ (x) V\ for any two representations

V\, K2 of Y.
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Corollary 2.9. As representations of Y, we have

Wm(a)* Wm(-a)
Proof. On Wm(a), J(x) acts as ax. Therefore, on Wm(a)*, J(x) acts as

- ax.
The following is a related result.

Proposition 2.10. Every evaluation representation Wm(a) has a non-
degenerate invariant symmetric bilinear form.

This means that there is a non-degenerate symmetric bilinear form < >
on Wm(a) such that

(2.11) <y.vuv2> <ul,w(y).u2>

for all y e Y, v2e Wm(a).

Proof. It is well-known that the representation Wm of §I2 carries a form
< > which satisfies (2.11) for d\\ye§>\2. Moreover, the form is unique up
to a scalar multiple because Wm is irreducible. To prove (2.11) in general, it
suffices to check the case y x^ since the case y x^ then follows because

< > is symmetric, and co(x^") x^ Since vectors of different weights
are orthogonal, it is therefore enough to prove.

(2.12) <x^.ehei + k>

(with the understanding that et 0 unless 0 ^ ^ n). This follows easily from
Proposition 2.6 and the invariance of < > under §I2.

3. A COMBINATORIAL INTERLUDE

The form of the polynomial P associated to the representation Wm(a) in

Corollary 2.7(b) suggests the following definition.

Definition 3.1. A non-empty finite set of complex numbers is said to be

a string if it is of the form {a, a + 1, a + n) for some a e C and some ne N.

n
The centre of the string is a + - and its length is n + 1.

2

We shall also need:

Definition 3.2. Two strings Si and S2 are said to be non-interacting if
either
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