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LINK SIGNATURE, GOERITZ MATRICES
AND POLYNOMIAL INVARIANTS

by A.S. LipsoN

ABSTRACT

Lickorish and Millett introduced the notion of skein equivalence of
oriented links in [15]. In the first part of this paper I show that the link
signature function o,: S — Z of [22], [12], etc. is a skein invariant for
links with non-zero Alexander polynomial. In the second part I show that
a renormalised form of Kauffman’s polynomial invariant F,(a, z), well-defined
on non-oriented links is calculable from the Goeritz matrix.

1. P-SKEINS AND SIGNATURE

In this section I present two notions of “skein equivalence” for links;
“broad” skein equivalence and “narrow” skein equivalence. Narrow skein
equivalence is a stronger relation (i.e. has smaller equivalence classes), but
it is not clear whether it is strictly stronger. I show that the link signature
function o,:S' — Z is a broad skein invariant for all links with non-zero
Alexander polynomial. It is not known whether this result extends to links
with zero Alexander polynomial, but it seems unlikely that it should.

1.1. PRELIMINARIES

I briefly recap on some standard material. See [19], [2] or [5] for
further details. Let L be an oriented link. Then it is always possible to find
an oriented surface F embedded in S* in such a way that 0F = L, with
the appropriate orientation. Such a surface is called a Seifert surface for
the link L. Now let ¢, .., ¢, be closed curves lying in S whose homology
classes generate H(S), and let ¢;,..,c, be the results of pushing these
curves slightly away from S in the positive direction in a collar neigh-
bourhood of the surface. The matrix V' = (v;;), where v;; = lk(a;, a}), is
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called a Seifert matrix for the link L. Of course such a matrix is not
well-defined, but it is true that any two Seifert matrices for a link L
are S-equivalent; that is, can be transformed into each other by a finite
sequence of the moves

(1) V - PVP,

where P is an integral unimodular matrix, and

V
) V- 0 1
0 0
Up to sign and multiplication by a power of t, the Alexander polynomial
can be obtained by

(3) AL(t) = det (tV —V7").

Finally, the determinant of L is given by

(4) det(L) = i"det (V+ V")

where V' is an n x n square matrix, and the classical Signature of the link L
1s defined by

5) . 5, = o(V+V)

and this turns out to be a well-defined link invariant.

Tristram [22], Levine [12] and others have developed the following
generalisation of the classical signature of a link: Let V' be a Seifert
matrix for a link L, and ® a complex number of modulus 1. Instead of
considering the symmetric matrix V + V', we can deal with the Hermitian
matrix H®) = (1—o)V + (1—w)V'. The fact that | | = 1 enables us easily
to show that the signature o(H(w)) is unchanged by the moves (1) and (2)
and so takes the same values for S-equivalent matrices. It hence provides a
function o,:S' — Z which may be regarded as a link invariant. Further,
H®) = (0—1) (V' —V") so o (®) 1s continuous away from roots of the
Alexander polynomial. Clearly o,(—1) is twice the classical signature of
a link.

By a skein triplet (or oriented skein triplet) of links I shall mean a
triplet (L., L_, L,) of oriented links which are identical outside some ball
B < S° and inside it are as shown in Figure 1.
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FiGure 1

There are two equivalence relations with which we may be interested:
Let R, be the equivalence relation on the set of links generated by:

L.R,L".,L_R,L" = LyR,Lj
6) if (L,,L_,Ly) and (L'y,L",Ly) § L+RyL"y, LoR, Ly = L_R,L"
are skein triples then L_R,L'_,L,R,L, = L,R,L", .

I shall call this equivalence relation broad oriented skein equivalence. The
other relation on the set of oriented links, narrow oriented skein equivalence,
is the equivalence relation R, generated by:

o if (L,,L_,L,) and (L',,L"_,L%) { L,R,L.,L,R,Ly= L_R,L"

are skein triples then L_RL",L,R,Ly=L,RL","

It is obvious that R, is a weaker equivalence relation than R, (ie. the
equivalence classes are larger), but it is not clear (and I do not know)
whether it is strictly weaker. By the broad or narrow oriented skein of links
I refer to the set of equivalence classes of oriented links under the relation
R, or R, (Note that in most of the literature, R, is referred to as
“skein equivalence”; R, is not referred to at all). The polynomial invariant
P (I, m) of [15], [3] etc. may be regarded as the most general linear broad
skein invariant (see [15], [16]). The fact that the value of P (I, m) specified
on the unknot U is sufficient to define its value on any link may be
taken as saying that the broad oriented skein is generated by U. The
corresponding statement for the narrow oriented skein is that specifying the
values of P,(l, m) on all unlinks is sufficient to define its values on all
links — the set of unlinks generates the narrow oriented skein.

1.2. SIGNATURE AND ORIENTED SKEINS

I now show that the signature function o,(§) of any link with non-zero
Alexander polynomial is a broad oriented skein invariant (It is already

known that the signature o = 5 o,(—1) is a narrow skein oriented invariant
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for knots — which are, of course a proper subset of the set of links with
non-zero Alexander polynomial — see e.g. [15]). Before proceeding with this,
however, I introduce some convenient notation. Given links L and L', set

oo if L#L

®) " po<L,L')-—-{O Lo

Now for n > 0 set

min (1+max{pn(LlaL1)s pn(LZ’Lz)}) ’
skein triples
(L, Ly, L)
(L', L1,L3)

min (1 +max{p,(Li,L]), pr(L2, L})}),
skein triples
_ (Lo Lo Ly)
9 pu1(L, L") =min (Li,L",L))

min (1+max{pn(L19L1)’ pn(L2,L2)}) ’
skein triples
(Ly,La,L)
(L1,L3,L)

min  (p,(L, L")+ p.(L",L")) .

Links L"’

Finally, define

(10) p(L, L) = lim p,(L, L))

to be the broad skein distance from L to L'. It is easy to see that p
is a metric on the set of links, and that p(L, L') < co if and only if L
and L' are broadly skein equivalent. Intuitively, p measures the number
of skein triples in a minimal chain of simple skein equivalences needed to
establish skein equivalence. It is useful because it provides a grip on broad
skein equivalence for use in inductive proofs.

By modifying equation (9) (i.e. by removing the third line inside the outer
minimum) a similar metric can easily be defined for narrow skein equivalence,
but I shall not need it here.

Note that since skein-equivalent links have the same P,(l, m) and hence
A,(t) and determinant, it makes sense to speak of the determinant of a skein
equivalence class.

THEOREM 1. The signature is well-defined on broad oriented skein equi-
valence classes with non-zero determinant.
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Proof. The proof proceeds by induction on the broad oriented skein
distance p between two links. If p(L, L) = 0 then L = L and trivially
o(L) = o(L’). For the inductive hypothesis suppose that p(L, L) < n implies
that o(L) = o(L') whenever det(L) = det(L’) # 0. I will prove that this is
enough to show that the same is true whenever p(L, L) = n and
det(L) = det(L) # 0. This will suffice to prove the theorem.

Now if p(L, L') = n then from the construction of p we can see that
p L, L) = n and p,_;(L, L) = co. One of the following cases must occur,
corresponding to the four lines in the outer minimum of equation 9:

1) There exist skein triplets (L, L,, L,) and (L', L', L5) such that p(L,, L)
<n— landp(L,,L,) <n — 1.Theno(L,) = o(L})and o(L,) = o(L?),
provided det(L;) # 0 and det(L,) # O respectively. Let L, Ly, L, be
given Seifert surfaces M, , M_, M, which are identical away from the
crossing at which the links differ and near it are as shown in Figure 2.

M,

FIGURE 2

Choose a set of generators for H,(M,; Z) and extend to sets of generators
for the first homologies of M, and M _ by including loops which intersect
the additional crossing once in the link projection as shown, and which
are identical away from this crossing. Then using these to obtain Seifert
matrices V., V_, V, for the three links, we find that V', + V', V_ + V",
Vo + Vi are of the form

2r p 2r+2 p
11
( ) (p/ S0> ’ ( p/ SO) bl (SO) .

Now if det(L,) # 0, transformations of the form Q — PQP’ (P nonsingular
and with rational entries) suffice to put these matrices in the form

m 0 -1 0
(12) (0 SO>,<'”O SO>,(SO),
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where det (Sy) # 0. Then

olly =o(V,.+V'))
= o(Sy) + sgn (m)

using the inductive hypothesis for the equality of the third and fourth lines.
If, however, det(L,) = 0, then det(L) # 0 = det(L,) # O and the three
matrices can be put in the form

A 0

0 0)°

with det(A) # 0 and € = + 1, whence it is easy to check that

m 0 ¢ m—1 0
(14) 0 A 0}, 0 A
e 0 O g 0

S O M

(15) o(L) = o(4) = o(L;) = o(L}) = o(L).

2) There exist skein triplets (L,, L, L,) and (L', L', L%) such that p(L,, L))
<n—landp(L,,L,) <n— 1.Theno(L,) = o(L’)and o(L,) = o(L%).
We may prove by precisely the same arguments as in Case 1) that
o(L) = o(L).

3) There exist skein triplets (L, L,, L) and (L', L', L) such that p(L,, L")
<n-—landp(L,,L%) <n— 1.Theno(L,) = o(L})and o(L,) = o(L)),
provided det (L) # 0 and det(L,) # O respectively. In this case L = L,
in the skein triplet under construction. As above, we may choose Seifert
matrices V,,V_,V, for L;,L,, L such that (after transformations of
the form Q — PQP’, P non-singular and with rational entries)
Ve + Vi, V_+V_,V,+ V, take the forms

m 0 m—1 0
1o (0 5) (" 5) o0

where det(S,) # 0. Then at least one of L,, L, has non-zero determinant.
Without loss of generality, suppose det (L) # 0. Then ‘
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o(L) = o(So)
= o(L,) — sgn(m)
det (L,)
(17) = o(L;) — sgn (i et (L)>
det (L")
= o(L}) — sgn (—l—th—(L,)>
= o(L)

using the inductive hypothesis to establish the equality of the third and
fourth lines.

4) There exists a link L” such that p(L, L") < n and p(L", L') < n. Then

This concludes the proof of Theorem (1). Note the use made of the fact
that it is not possible for exactly one member of a skein triplet to have
non-zero determinant. Note also that although the transformations Q — PQP’
(P nonsingular with rational entries) may alter the determinant, they do not
change its sign, which is all that the proof requires. [

Unfortunately it is not clear how to deal with the cases in which
det (L) = 0, because it is conceivable that one or more of the skein triplets
in the chain establishing skein equivalence of two links could have all
three determinants equal to zero, in which case the methods of the above
proof would not be applicable. It becomes clearer what is going on and
that these exceptions are not just artifacts of a poor proof when the more
general situation of the signature function o,: S' — Z is considered.

Now since the Alexander polynomial A/(t) can be obtained from P,(l, m)
it is clearly a broad oriented skein invariant and it makes sense to state

THEOREM 2. Broadly skein-equivalent oriented links have the same signature
Junction o (@) for all ® other than roots of the Alexander polynomial.

Proof. The proof of Theorem 4 goes through virtually unmodified
(Ar(w) takes the place of the determinant, and the obvious changes are
made to accommodate the fact that we are dealing with Hermitian matrices
instead of symmetric ones). [
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Now if we adopt the usual convention (see [5]) that the value of
o (®) at a root of the Alexander polynomial is defined to be the mean
of its two “adjacent” values

(18) lim o (we®) and lim o (we”),

e—>0+ e—>0—
the fact that both of these values are well-defined broad oriented skein
invariants completes the proof that

COROLLARY 3. The signature function o.:S' — Z is a broad oriented
skein invariant for all links with non-zero Alexander polynomials. [

This is an intriguing result, especially in view of the fact that o (®)
is known to be a concordance invariant. It is natural to ask what relations
there may be between skein theory and concordance theory. Another obvious
question 1s that of what happens when the Alexander polynomial A, is
identically zero. In these circumstances the first Alexander ideal of the link
collapses and the signature function can be thought of as extracting
information about higher Alexander ideals. Kanenobu ([8] and [9]) has shown
that there exist infinitely many links with identical P-polynomials but distinct
second Alexander ideals, so there is no obvious reason to suppose that
this information should be skein invariant. However, I know of no counter-
examples to the conjecture that o,(®w) 1s a broad oriented skein invariant
for all links.

2. (GOERITZ MATRICES AND THE F-POLYNOMIAL

In this section I explore the relationships between the graph of a link,
its Goeritz matrix and Kauffman’s polynomial invariant F,(a, z). In particular
I show that the F(a, z), is essentially calculable from the Goeritz matrix
of a knot. This result makes use of facts about planar graphs discovered
by Whitney over 50 years ago.

2.1. THE GOERITZ MATRIX AND GRAPH OF A LINK

Kauffman [10] has defined a polynomial invariant F,(a, z) of oriented
links as follows:

Recall the definition of the three -Reidemeister moves, see Figure 3.
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FIGURE 3

Two link diagrams represent the same link if and only if one can be
transformed into the other by a finite sequence of these moves (see [18]).
We define a polynomial invariant A € Z[a*!, z**] of unoriented link diagrams
by the four axioms:

i) A (unknot) = 1.
ii) A is invariant under Reidemeister moves II and III.

iii) The effect of Reidemeister move I on A is to multiply by a or a™!:
— g1 —
(19) ANQ) = a7 ' A, AQ) = aA(~).

iv) If four link diagrams L., L_, L, and L, are identical except in a ball B
where they are as shown in figure 4 then

(20) ALL) + AL-) = 7(A(Lo)+A(Ly))

Axioms i)-iv) are sufficient to define A for all link diagrams. Now
given an oriented diagram we can temporarily forget its orientation and
calculate its A-polynomial. Let w be the writhe of the diagram (that is,

the number of positive crossings less the number of negative crossings).
Then

1) F(a,z) = Aa,z)-a™*
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is a link invariant, the Kauffman polynomial (see [10]). Note that in order
to define F;, we need the writhe, which is orientation-dependant, so F
1s an invariant of oriented links. However, for knots (1-component links),
reversing the orientation leaves the sign of any given crossing, and hence
the writhe, unchanged, so for knots F; may be regarded as an unoriented
invariant. If L = U:': , Li 1s an arbitrary oriented link with components L;,
then Fi(a, z) - a*?, where L = ). . IK(L;, Ly) is the total linking number of L
i1s unchanged by reversal of orientations of components, and so should be
regarded as an unoriented link invariant (This observation has also been
made by Turaev in [23]). Like P,(l, m), F;(a, z) behaves nicely with respect
to disjoint and connected sums of links:

(22) FL1 Lz(aa z) = FLl(aa z)" FLz(aﬂ z)
(23) Fron(az) =z Ya+a t—1) - F, (a,2) F(az2)

and is also invariant under mutation (see [1], [ 10]).

X X (=

+ o 0 ©

FIGURE 4

Now recall the definition of the Goeritz matrix of an unoriented connected
link diagram 2 in the plane (see [6]). Such a diagram divides the plane
into regions, which we proceed to colour black and white, chess board
fashion, so that adjacent regions are distinct colours (It is not hard to see,
using the Jordan curve theorem, that this can always be done). By con-
vention we colour the infinite region white. Now label the black regions
R,,R,, .., R, say. At each crossing in the diagram a region R; meets a
region R;, not necessarily distinct. This crossing takes one of two forms,
illustrated in Figure 5, and we allocate signs £ = =1 to the crossings
accordingly (The value &, which is defined only in the presence of a chess-
board colouring of a link diagram, should not be confused with the sign
of a crossing as defined in section 1. Unfortunately, the word “sign” is
now well-established for each of these values in the literature.)
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7/

FIGURE 5

Now construct an (nx n) matrix A as follows: for i # j, let a; = Y &(c),
where the sum is over all crossings ¢ at which R; meets R; in the diagram.
The diagonal elements are given by a; = — Zi#j a;; so that the row
and column sums are all zero. A Goeritz matrix G for the link is then
obtained by discarding the first row and column of 4. Clearly G is not an
invariant of the link, or even of the link diagram (any other row or column
could have been discarded instead of the first one, for example). It is,
however, a relation matrix for H,(D;), where D, is the two-fold branched
cover of the link complement, and certain functions of it are true link
invariants. For instance, the absolute value of its determinant is the absolute
value of the determinant of the link. Further, G~! is a matrix of the linking
form on H,(D;). I shall show later in this section that, up to the writhe
and total linking number, Kauffman’s two-variable polynomial F(q, z) is a
function of G. This raises the (unanswered) question of precisely what
F,(a, z) has to do with, for example, this linking form.

The graph of a unoriented link diagram is constructed in a similar way.
Take a vertex v; in each black region R; of the chess board coloured link
diagram. Now for each crossing ¢ at which R; meets R;, add an edge
joining the corresponding vertices v;, v;. This edge is labelled with the sign
&(c) of the crossing. This construction provides us with a (signed) planar
graph with a particular planar embedding. Conversely, given a planar
embedding of a signed graph, one can construct a corresponding link diagram
by placing a crossing of the appropriate sign in the middle of each edge
and connecting these by arcs that run parallel to the edges of the graphs
until they meet in neighbourhoods of the vertices. The graph is connected

if and only if the link diagram is. See Figure 6 for an example and [2]
for more details.
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Notice that the graph of a connected diagram contains strictly more
information than the Goeritz matrix, all information about the particular
planar embedding and about loops in the graph being lost. Indeed, we can
make use of this to construct diagrams of distinct links with identical
Goeritz matrices, by picking graphs with more than one planar embedding.
However, the variation that occurs here can be kept under tight control
and I will make use of this fact later in this section.

2.2. KAUFFMAN’S POLYNOMIAL AND THE (GOERITZ MATRIX

I now proceed to the main result of this section, linking the Goeritz matrix
with Kauffman’s F-polynomial invariant. Recall the observation made in
section I that F,(a, z) = F,(a, z) - a*? is invariant under change of orientation
of components of L (where A is defined to be the total linking number
of L). Equivalently, we can define F (a, z) by

(24) Fiaz) = Agla,z)-a™™

where 2 is a diagram of the link L and w' is the proper writhe of 9,
defined to be the algebraic sum of the signs of all crossings where a
component of L meets itself. Note that the sign of such a crossing can be
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defined independently of any orientation on the link L (here I am speaking
of crossing signs in the sense of section 1, not of the value E defined by
a chess-board colouring of a diagram).

The following will be proved:

THEOREM 4. The invariant F (a,z) for alink L is a function of the
Goeritz matrix of any diagram 2 of L. [

Before proving Theorem 4, I must digress once again into graph theory.
Recall that a graph is said to be k-connected if any k — 1 vertices (and
their adjoining edges) may be removed without disconnecting the graph.
The following result is due to Whitney ([27], [28]).

THEOREM 5. Any planar embedding of a 3-connected graph is essentially
unique.  []

The word “essentially” here means that we regard as equivalent any two
embeddings which are ambient isotopic, any region of the graph’s complement
in the plane may be chosen to be the infinite region (this corresponds to a
choice of region to contain the point at infinity in an embedding in the
sphere) and the embedding may be reflected in some line in the plane.
For more details, see [27], [28].

COROLLARY 6. Let P, and P, betwo planar embeddings of a connected
graph G. Then there exists a finite sequence of the following moves which
will transform P, into P,:

I. Ambient isotopy.
I1. Reflection in a line.
II1. The move illustrated in figure 7a).
IV. The move illustrated in figure 7b ).
V. The move illustrated in figure 7c¢).

Proof. Proceed by induction on the number n of edges of G. Clearly
the result is trivially true if » = 0. Now suppose it true far all connected
graphs with < n edges, and let G have n edges. If G is 3-connected
then the result follows from Theorem 5. Otherwise there is a vertex or pair
of vertices whose removal disconnects G. I consider these two cases separately.
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|

a) Move III

c) Move V

FIGURE 7

1) If there is a single vertex v whose deletion disconnects G, let G,
and G, be the graphs obtained from the two components by adding to each
a copy of v. Each of G;, G, has fewer edges than G and so by the
inductive hypothesis each satisfies the result. Now G is obtained from these
two graphs by identifying the two copies of the vertex » and a planar
embedding of G is specified by giving planar embeddings of G, and G,
and specifying which planar region adjacent to the copy of v in each is
occupied by the other. These different possibilities are all accounted for by
moves III and V. Moves I, III, IV and V on G, and G, individually
just correspond to the same moves on G, and move II on G; or G,
corresponds to move IIT on G.
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2) If there is a pair of vertices u and v whose removal separates G
but no such single vertex, let G, and G, be the graphs obtained from the
two components by adding to each copies of u and v. Each of G, and
G, has fewer edges than G and so by the inductive hypothesis each
satisfies the result. Now G is obtained from these two graphs by identifying
the copies of u and v, and a planar embedding of G is specified by giving
planar embeddings of G; and G, and specifying which planar region
adjacent both to the copy of u and the copy of v in each is occupied
by the other. These different possibilities are all accounted for by move IV.
Moves I, III, IV and V on G, and G, correspond to the same moves
on G, and move II on G, or G, corresponds to move IV on G. Hence
the result is true of G and the induction proceeds. []

(In fact, move II is redundant since it follows from move IV, the subgraph
on the left of the two chosen vertices in Figure 7b) consisting of a single
edge joining those two vertices. Similarly, move III may be constructed
from move IV, the subgraph to the left of the two chosen vertices in
Figure 7b) being disconnected. I include these moves for clarity, however.)

Now consider the effects these moves on planar graphs have upon the
corresponding link diagrams. Ambient isotopy of the graph merely
corresponds to ambient isotopy of the link diagram. Reflection of the graph
in some line corresponds to a reflection of the link diagram in that line
followed by a reflection in the plane, the net effect of which is to rotate
the link through 180 degrees about the line (see Figure (8)). Hence this does
not change the link type corresponding to the graph’s planar embedding.

Observe that if the signed graph G of a link diagram & has a cut-
vertex v as in moves III and IV, then & is a connected sum. Figure 9
shows that move III corresponds to breaking up a connected sum and
reconstituting it after reversing one of the summands. This may alter the
link type of the connected sum (if at least one of the summands differs
from its reverse), but does not affect the F -polynomial, since for any links
L,,L,,we have

(25) Frism, = Fr, - Fp,,

independent of the particular connected sum taken.
Similarly, move V corresponds to breaking up a connected sum and then

reconstituting it, possibly summing together different components of the links.
Again, this does not affect F,(a, z).
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This leaves only move IV to be analysed. Figure 10 shows that this move
corresponds to mutation of the underlying link. Once more, this leaves the
F -polynomial unchanged.

The preceding discussion proves

THEOREM 7. Given a link L with link diagram 2, the I;-polynomial
of L depends only on the isomorphism class of the signed graph corres-
ponding to 2, and is independent of any particular planar embedding
chosen. []

In fact the same argument shows

link diagrams

FiGURE 10
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LEMMA 8. Given a link diagram @, the regular isotopy invariant
Agla, z) depends only on the isomorphism class of the signed graph corres-
ponding to %, and is independent of any planar embedding information. [

I can now proceed to the

Proof of Theorem 4. This follows from Theorem 7. The only information
retained by the graph of a link diagram which is lost in passing to a
Goeritz matrix is

(1) The number of edges of a given sign there are joining any particular
pair of vertices. For each such pair the Goeritz matrix retains only the sum
of the signs of these edges. But in terms of a chess-board colouring of the
link diagram, this is to say that only the sum of the signs of crossings
joining any two coloured regions R; and R; is retained. Suppose given a
link diagram % with a chess-board colouring and two coloured regions
R;,R;. Figure (11) shows that if R; and R; are connected by both a
positive crossing and .a negative crossing then by mutation of the link
diagram these crossings can be made to cancel each other out.

FiGure 11

But mutation leaves F 1(a, z) unaffected so it follows that only the sum
of the signs of crossings joining each pair of coloured regions in & is
relevant to calculation of F .

(2) The number of loops. However, loops in the graph correspond
(possibly after an application of move V to the corresponding signed graph,
see Figure 12) to Reidemeister-I style loops. These do not affect F;(a, ).

The theorem follows immediately. [
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FIGURE 12

I conclude this section with an interesting observation. Gordon and
Litherland [6] defined a signature o, for an unoriented link (differing from
the classical signature of an oriented link by a term which is essentially
the total linking number) and showed that it may be calculated from the
signature of a Goeritz matrix by using a correction term calculated from
the ‘““types’” of crossings in the associated diagram (Figure (13)).

XX

Type I Type II

FIGURE 13

Their expression for o is
(26) o(L) = o(G) — ) &),
1I

the sum being taken over all crossings of type II where a single component
of the link meets itself (at such crossings the type can be determined without
ascribing an orientation to the link; for oriented links one sums over all
crossings of type II to obtain the classical signature). But following through
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the same argument as above for the ﬁ-polynomial, we can show that the
proper writhe of a “reduced” diagram (i.e. one with neither loops nor
isthmuses in the corresponding signed graph) is a function of the Goeritz
matrix (One uses precisely the same reasoning: Examine the effects of the
moves of Corollary 6 and show that only the sums of signs of crossings
joining adjacent regions are relevant). So given a Goeritz matrix for a
diagram &, the proper writhe of the diagram can be used to calculate
the number of loops and isthmuses in the corresponding signed graph.
Hence Gordon and Litherland’s correction term ZH E(c) can be calculated
from the Goeritz matrix and the proper writhe of the diagram, and conversely
the proper writhe can be obtained from the Goeritz matrix and this term.
So in the presence of the proper writhe of a diagram, the Goeritz matrix
can be used to calculate the (unoriented link) signature o, .
Now, Thistlethwaite in [21], and Murasugi in [17] have proved

LEMMA 9. The (proper) writhe of an alternating reduced diagram of a
link L is an invariant of the link. [

from which follows:

LemMA 10. The signature of an alternating unoriented link is a function
of any Goeritz matrix for that link. []

This should be compared with the result, also in [21] and [17]:

LEmMMA 11. The (classical) signature of an alternating link is a function
of the F-polynomial of the link. []

Theorem 4 raises the interesting question of what relation there is
between F;(a, z) and the quadratic forms represented by Goeritz matrices.
In particular, can either of the last two results be improved to cover
non-alternating links?
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