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(i) When f = p (prime) and p does not divide a, we set I, = 1. If p
divides a, we take for I the ideal a,[1, ¢;] following I in its period. In this
case, as pla, from p2D = b} + 4aa;, we see that p|b; and so, as
GCD(a,, by,a) = 1 we see that p does not divide ;. Then, by (2.12), we have

I, = pI with p = % ¢;. Now, by Proposition 5, ¢; = é%ﬁ is reduced,
so that 1 < b; <|/D’, and |

(7.5) l<a <yD,

giving

(7.6) 1<p< D .

The rest of the proof follows exactly as in the proof of (i) using (7.5)
(resp. (7.6)) in place of (7.3) (resp. (7.4)).

8. (GAUSS’S REDUCTION PROCESS

Definition 14. (Half-reduced) A representation {a, b} of an ideal 7 is said
to be half-reduced if

-b+ VD
o< Z2FVD

8.1
(8.1) 2le]

where ¢ = (D — b?) | 4a.
An ideal Iis called half-reduced if there exists a half-reduced representation
of I.

Clearly, if {a, b} is half-reduced, then b < |/D and { — a, b} is half-reduced.

LEMMA 7. Let I be a primitive ideal of Op. To each representation
{a,b} of 1 corresponds a unique integer q such that the g-neighbour
representation {a’,b’} is half-reduced. The integer b’ and the ideal

[ b +1/D
r=\a

are determined by 1. The value of q is

b+)/D

2 |a|

b

a
(8.2) q=—
|a]
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The representation {a’,b’} and the ideal I' are the Gauss neighbour
of the representation {a,b} and of the ideal I respectively, so that

G
{a,b} > {a’,b"} .

D—b"? : :
Proof. Asc’ = (—2 = a (by (2.10)), the g-neighbour representation
4a’

{a’,b’} of {a, b} is half-reduced if

-b' +1'D
< S —

<1,
2lal|

b+}D a . a [b+)/D
- — g <1, giving q =

2lal  Ja lal | 2]a]
which shows that ¢ and {a’,b’} are determined by {a, b}. Let

{+a, b+2K|al|} = {a;,b} be another representation of I giving rise to a

that is, by (2.10), if 0 <

9

half-reduced representation, say {a,,b/}. As b/= — b;= — b= b'(mod?2 |a|)
and | a;| = |a|, we see from the inequalities
' D—b’ 1'D — b
0< <1l and 0K < 1
2]al 2| a|

that b, = b’. Hence, as |a|=|a;| and b = b/, from D = b'2+ 4daa’
= b2+ da,a/, we see that |a This shows that I/ = I, which
completes the proof of Lemma 7.

=|a/|.

PROPOSITION 11. Let {a,b} be a half-reduced representation of a half-
b'+)D
T2

reduced ideal I. Let {a,b}g{a’,b’} and set I' = [a We

have
(i) if b<—1'D then b >b+2,D,
(ii) if b> —1/D then I' is reduced.
(iii) if 1 isreduced, then I’ is reduced, and moreover if {a, b} is the
b+)D

2a
the Lagrange neighbour and the Gauss neighbour are the same.

representation of I such that a>0 and ¢ = Is reduced, then

Proof. For any representation {a, b} of any primitive ideal, we have
/D —b { '1/5 +b ‘
2c 2a

(8.3) [ =1.
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Now take {a, b} to be a half-reduced representation of the half-reduced

X —b+\/D

ideal I so that 0 < 2|—1|F < 1, where ¢ = (D — b?)/4a.
C

(i) Suppose that b < — /D. Then we have b>— D = 4|a||c| so that (8.3)

Vﬁ—b) (—b—l/ﬁ ~b+)/D

2] c| 2| al 2|c|

becomes ( < 1, we see that

B -b'+/D
TI_I_ > 1. But, as {a’, b’} is also half-reduced, we have —2—|*|£ <1
ab a

so that — b’ +)/D<2|a| < —b~—|/D, proving that b’ > b + 2|/D.
(ii) Suppose that &> —|/D. Then, we have || <]/D, and (8.3) can be
written

)=1.ASO<

H

() (220)

2lel 2]al
V/D+b

2|a|

VDb’ VD+b  a

<1, that is 0 < — — g <1, so that

showing that > 1. Or the other hand, as {a’,b’} is half-reduced,

we have 0 <

2|al 2|al |a|
a D+ b
I TN R

Hence we obtain

1/5+b’:1/5—b+2aq:(1/5—b)+2}a|(’a—q—|) >2|al,
]

/D - b’
2]al
reduced if ¢ >0 and — ¢’ is reduced if a <0, proving that I’ is reduced.

which, together with the inequalities 0 < < 1, shows that ¢’ is

(iii) We suppose that I is reduced and choose the representation {a, b} of I with
b+

D : .
5 reduced. As ¢ is half-reduced and b > — |/D from (ii)
a

a>0and ¢ =

we see that I’ is reduced. Moreover, the integer ¢ used to obtain both the
Lagrange neighbour and the Gauss neighbour of {a, b} is [¢]. This shows that
the two neighbours of {a, b} are the same and concludes the proof of
Proposition 11.

Definition 15. (Gauss’s reduction process ([1]: §§183-185)) We start with
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a primitive ideal I, of Op and a representation {a, b} of I,, and define the
sequence of representations {a,, b,} of the primitive ideals I, by

{an9bn}g{an+l’bn+l} (n=0,1,2,...).

We now show that Gauss’s reduction process leads to a reduced ideal
equivalent to /. In addition we give an upper bound for the number of steps
required to obtain a reduced ideal I, as well as bounds for a quantity p in the
relation I, = pl,.

PROPOSITION 12. (i) The ideal I, is reduced for

,00|
n>max |— + 1,2} .

/D

(it) Let I' be the first reduced ideal obtained by applying Gauss’s

1
reduction to I,. Then I=pl, with — <p<|/D.
ap

a
Proof. We suppose that n > max (|——0| + 1,2) so that n > 3.

/D
If by> — /D, by Proposition 11 (i), /, is reduced and so, by Pro-
position 11 (iii), 7, is reduced.
Suppose on the other hand that b, < — /D and that I, is not
reduced. Then, by Proposition 11 (ii), we see that b;< —|/D for
1 =1,2,...,n—1. Then, by Proposition 11 (i), we have

bp_1>b,+2(n-2)/D .
+2 (Ialo)‘ —1) /D
)

Hence we obtain

+ /D
bn_1> —b0+200( il [ & (bO
lao | Ll ao|

200

)+
>—bo+2|a0|(b;J|raV?—1) +2(%—1 /D
- /D, O

which is a contradiction. This completes the proof that 7, is reduced for

1 > max (l_a_ol +1,2) .

/D

(1) Let I, be the first reduced ideal obtained from I, by Gauss’s reduction
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1
process. If n =0 then p = 1, so that I—f <p<)D. If n>1 we have
ap

I, = pl, with (by (2.12))

a a,

= 0...

Qo a, 1

an

b,+1D

2(11

b,+ /D
2a,

p = O

o

As the representations {a,, by} are half-reduced for k> 1, we see, by (8.3),
b, + ‘/B

2ak

a, 1
—| = f_l On the other hand
o

that >1(k>1) so that p>

Ay
we have

-

blﬂ/ﬁl ’bnﬂ/f)
2¢0 |1 2a,-, |

As {ay,b;} is a half-reduced representation for k =1,2,...,n, we have
0<)D-by<2|ac_,|. Furthermore, for k=1,2,....,.n—1, we have
/D+by<2|ai_,|, as otherwise 0<|/D—-b,<2|ac_,|<)/D+ by,
which is equivalent to 0<]/D — b, <2|a.| <)/D + b, so that by (4.2)
the primitive ideal 7, would be reduced. Therefore, for k =1,2,...,n — 1, we
have

Vﬁ'+bk<2|ak_1l, if b, >0,
VD — by <2lai_,|, if by<O0,

|@+m|<@+|bk|:{

so that, as {a,, b,} is reduced,

b, +1D
<—£<1/T)

P
z'an—li

which completes the proof of Proposition 12.

We remark that Proposition 7 and 12 suggest that Lagrange’s
reduction process may lead to a reduced ideal much faster than Gauss’s
reduction process, as the number M, of Lemma 6 is much smaller than

max l_a_o|+12)
VD )

Example 5. We apply both Lagrange reduction and Gauss reduction to
the representation {3655,7068} of the primitive ideal [3655,3534 + |/21] of
084- We obtain




and
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L L
{3655,7068) = { — 3417, — 7068} = {4,234} = {3,6} (3 steps)

G G
13655,7068} > { — 3417, — 7068} > {3187, — 6600} = { — 2965, — 6148} = ...

Sl —12) S (=58 (30 steps) .

|a0|

We remark that M, is approximately 8.72 and — +1 s approxi-

l/ D

mately 399.8.

[1]

(3]
[4]
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