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(ii) When / p (prime) and p does not divide a, we set Ix — I. If p
divides a, we take for / the ideal #i[l,(|)i] following I in its period. In this

case, as p\a, from p2D b\ + 4aa{, we see that p | bx and so, as

GCD(ax, bi, a) 1 we see that p does not divide ax. Then, by (2.12), we have

I\ p/ with p — 01. Now, by Proposition 5, <\>x ——is reduced,
a 2ax

so that 1 ^ bx < l/D7, and

(7.5) 1 sS a, < l/D7

giving

(7.6) 1 ^ p < ]

The rest of the proof follows exactly as in the proof of (i) using (7.5)
(resp. (7.6)) in place of (7.3) (resp. (7.4)).

8. Gauss's reduction process

Definition 14. (Half-reduced) A representation {a, b) of an ideal / is said

to be half-reduced if

-b + \/D
(8.1) 0< < 1

2 I c(

where c (D - b2) \ 4a.

An ideal / is called half-reduced if there exists a half-reduced representation
of /.

Clearly, if {a, b} is half-reduced, then b < ]/D and { - a, b) is half-reduced.

Lemma 7. Let I be a primitive ideal of Od. To each representation
{a3b} of I corresponds a unique integer q such that the q-neighbour
representation {a\b'} is half-reduced. The integer b' and the ideal

b' + \/D]/'

(8.2)

are determined by I. The value of q is

Q
b + \/D]
2\a I
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The representation {a',b'} and the ideal T are the Gauss neighbour

of the representation {a, b} and of the ideal I respectively, so that

{a, b} -> {a', b'}

(D-b'2)
Proof As c1 a (by (2.10)), the ^-neighbour representation

4a'

{a\b'} of {a,b} is half-reduced if

-b' + I'D
0< — < 1

2 I a I

b + 1/D a a
that is, by (2.10), if 0 < q < 1, giving q —

2\a\ I a I I a | 2|a\
which shows that q and {a', b'} are determined by {a, b). Let
{ ± a, b + 2K\ a\) {ax,bx} be another representation of / giving rise to a

half-reduced representation, say {a[,b[}. As b[ — bx - b Z/(mod2 \ a\)
and I a\\*=* \a\, we see from the inequalities

1 D - b' ] D - b[
0 < < i and 0 < < 1

2\a\ 21ö i I

that b[ b'. Hence, as |ö| |ö!| and b' b[, from D b'2 + Aaa'

b[2 + Aaxa[, we see that \a'\ \a[\. This shows that I[ I, which
completes the proof of Lemma 7.

b + \/D

Proposition 11. Let {a, b} be a half-reduced representation of a half-
G b' + VD

a Wereduced ideal /. Let {a,b} {a\b'} and set F

have

(i) if b < - 1 D then b' > b + 2)/D,

(ii) if b > - }/D then F is reduced.

(iii) if I is reduced, then F is reduced, and moreover if {a,b} is the

representation of I such that a> 0 and §
b + ^D

is reduced, then
2a

the Lagrange neighbour and the Gauss neighbour are the same.

Proof For any representation {a,b} of any primitive ideal, we have

(8.3) VD-b 1/D+b
2c 2a

1
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Now take {a, b] to be a half-reduced representation of the half-reduced

-b + \/D
ideal I so that 0 < < 1, where c (D - b2)/Aa.

2 Ici
(i) Suppose that b < — ]/D. Then we have b2 - D 4 | a \ \ c | so that (8.3)

: \a\IlVD-b\ l-b-VD\ ]/£>
becomes — 1. As 0 < < 1, we see that

\ 2\c\ \ 2\a\ |e j

-b-]/D -b' + VD
> 1. But, as \a\ b'} is also half-reduced, we have < 1,

2|*| 2 | * |

so that - b' + 1/D <2\a\ < - b - ]/D, proving that b' > b + 2\/D.

(ii) Suppose that b > - ]/D. Then, we have \ b\ < ]/D, and (8.3) can be

written

1/D-b\ I]/D + b\ i
2 I c I

1 &:i
yrD + b

showing that > 1. Or the other hand, as {</, b'} is half-reduced,
2 Iff I

v^d — b 1/d + b a
we have 0 < < 1, that is 0 < q < 1, so that

2|ff| 2|*| 1*1

a

u\q
1/D + b

2 I a I

^ 1
•

Hence we obtain

]/D+ b'Yd- b+ 2aq(]/D-b) + 2\a\ >2|«|,

1

which, together with the inequalities 0< <1, shows that (j/ is
2 I a I

reduced if a > 0 and - 0' is reduced if a < 0, proving that I' is reduced,

(iii) We suppose that / is reduced and choose the representation {a,b} of /with
b + ]/D z-a > 0 and $ reduced. As (j) is half-reduced and b > - ]/D from (ii)

2a

we see that /' is reduced. Moreover, the integer q used to obtain both the

Lagrange neighbour and the Gauss neighbour of {*, b) is [0]. This shows that
the two neighbours of {a, b} are the same and concludes the proof of
Proposition 11.

Definition 15. (Gauss's reduction process ([1] : §§ 183-185)) We start with
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a primitive ideal 70 of Od and a representation {a, b) of 70, and define the

sequence of representations {an,bn} of the primitive ideals In by

g{an,b„}-+ {an + x,bn +l}(«=0,1,2
We now show that Gauss's reduction process leads to a reduced ideal

equivalent to 70. In addition we give an upper bound for the number of steps

required to obtain a reduced ideal In as well as bounds for a quantity p in the
relation In p70.

Proposition 12. (i) The ideal In is reduced for

n > max

(ii)Let /' be the first reduced ideal obtained by applying Gauss's

reduction to I0. Then Ip/0 with — < p c
I I

Proof. We suppose that n > max I ~ + 1,2 I so that 3.fs+1'2)
If b{ > - ]/D, by Proposition 11 (ii), 72 is reduced and so, by

Proposition 11 (iii), In is reduced.

Suppose on the other hand that b{ < - ]/D and that In is not
reduced. Then, by Proposition 11 (ii), we see that b{ < - \fD for
i 1,2, 1. Then, by Proposition 11 (i), we have

bn~\ > b\ + 2(n — 2)|fD

Hence we obtain

tfo (bo + ]/D
b,7 -1 > — bo + 2üq

ao_

\ ao I do I 2#0
+ 2 ,UI

-i/o,
which is a contradiction. This completes the proof that I„ is reduced fortIao I

n > max —- +1,2
Vd

(ii) Let In be the first reduced ideal obtained from 7o by Gauss's reduction
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In p/0 with (by (2.12))

P
a\

I

a0

an

an -1

so that
1 _— ^ p < l/D. If n ;

1 «0 1

an bi+]/D bn + ]/D
a0 2a i 2an

As the representations {ak,bk} are half-reduced for 1, we see, by (8.3),

that
bk +1/D

2ak
> 1 (k ^ 1) so that p > >

1

I «0 I

On the other hand

we have

b\ + ][D bn +1/5
2a0 2an - \

As {ak,bk} is a half-reduced representation for k= 1,2, we have
0 < ]/D - bk < 2 I ak- x |. Furthermore, for k= 1,2,1, we have

1/5 + bk < 2 I ak-i 1, as otherwise 0 < \/D - bk<2\ak_x\ < |/5 + bk,
which is equivalent to 0 < ]/D - bk < 2 | ak | < )/D + bk so that by (4.2)
the primitive ideal Ik would be reduced. Therefore, for k - 1,2,..., n - 1, we
have

I ]/Ö + bk I ^ 1/5 + I bk I —

so that, as fan,bn} is reduced,

]/5 + bk < 2 I ak _ i I, if
]/5-^<2|^_1|p if

bk ^ 0

bk<0

bn + ]/5 /—P< ; <1/5
21 \ (In - 1

which completes the proof of Proposition 12.

We remark that Proposition 7 and 12 suggest that Lagrange's
reduction process may lead to a reduced ideal much faster than Gauss's

reduction process, as the number M0 of Lemma 6 is much smaller than

max (^'-M.2)

Example 5. We apply both Lagrange reduction and Gauss reduction to
the representation {3655,7068} of the primitive ideal [3655, 3534 + ]/2Î] of
084. We obtain
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{3655,7068} ~*{ — 3417, — 7068} -* {4,234} -*{3,6} (3 steps)

and

{3655,7068} -+ { - 3417, - 7068} ^ {3187, - 6600} ^ {- 2965, - 6148} ^
S- { - 1, - 12} ^ {-5,8}(30 steps)

I tfo I

We remark that M0 is approximately 8.72 and —= + 1 is approxi-
\ v

mately 399.8.
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