Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 36 (1990)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE
Artikel: STATE MODELS FOR LINK POLYNOMIALS
Autor: Kauffman, Louis H.

DOl: https://doi.org/10.5169/seals-57900

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-57900
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique, t. 36 (1990), p. 1-37

STATE MODELS FOR LINK POLYNOMIALS

by Louis H. KAUFFMAN

I. INTRODUCTION

This paper gives state models for the oriented (Homfly) ([32], [39], [68])
and semi-oriented (Kauffman) ([48], [49], [43]) polynomials.

The models are state models in the most general spirit of that term.
That is, they are summations over diagrammatic states. Each state is obtained
from the given link diagram by processes of splicing and labelling. Each
state contributes to the summation a product of vertex weights together
with a global evaluation. Such a description is parallel to the form of a
vertex model or partition function in statistical mechanics [10].

In fact, a number of already known states models are tightly interrelated
with statistical mechanics. The author’s bracket model for the original Jones
polynomial is a knot diagrammatic version of the Potts model (via an
ice-model translation) ([44], [51]). The author’s states model for the Conway
polynomial [42] can be seen as the low temperature limit of a generalized
Potts model [57]. Jones and Turaev ([40], [93]) have given models of
specializations of both the Homfly and Kauffman polynomials that are also
in the form of partition functions (called here Yang-Baxter models, see
section 7 of this paper. See also [25], [58]).

One might hope that a state model would make the verification of the
existence and properties of a polynomial easy — via the directness of the
definition. This is certainly the case for the bracket. And it is also true
for the FKT [42] model for the Conway polynomial (modulo a combinatorial
theorem, and some algebra). In the case of the Yang-Baxter models, the
work is concentrated in seeing that the associated Yang-Baxter “tensor”
satisfles certain properties (Yang-Baxter equation and an inversion relation).
This part can be clarified using the geometry of link diagrams ([55], [58]).

Research partially supported by NSF Grant DMS-8701772.



2 L. H. KAUFFMAN

The models given in this paper do not share this ease of definition.
Their well-definedness is just as easy or difficult as the standard inductive
proof of the existence of the polynomial in question. To discriminate them
from the Yang-Baxter and other models, I shall call them skein models.
The skein models are, in fact, seen as translations (into the language of
state models) of the recursive process of calculation due to John H. Conway
([16]). The term skein is due to Conway. It refers to all the knots and links
associated with a given link that are obtained via splicing or switching
some of its crossings. Skein calculation uses the knots and links in this
skein.

The first skein model was discovered by Frangois Jaeger [33], via a matrix
inversion technique. In this paper I show that Jaeger’s idea fits into the
more general scheme of skein calculation, and hence applies fully to both of
the known two-variable skein polynomials, and to their graph embedding
generalizations ([56], [74]).

As explained herein, the skein models appear as tautologous — parti-
cularly to anyone who has written a computer program to calculate knot
polynomials. This is the virtue of our approach! What is significant is that
we have, in fact, been in possession of general states models for these
polynomials for years. It took Jaeger’s observation about standardized
basepoints (called here a template — see section 2) to show what we
already knew.

It is useful to know that general states models exist. And it is very
fascinating to compare the form of the general models to the forms of
specific models previously known (bracket, FKT, Yang-Baxter). See sec-
tions 7, 8, 9 of this paper, particularly section 9 for a discussion of possible
physical interpretations. The appendix is a discussion of state model
formalism.

II. SKEIN POLYNOMIALS

This paper concentrates on two polynomials — the Homfly ([24]) or
oriented skein polynomial and the Kauffman or semi-oriented skein polynomial
([43], [49]). In both cases it is convenient to first define a polynomial that
is an invariant of regular isotopy ([49]), and then normalize the regular
isotopy invariant to obtain the corresponding skein polynomial.
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NOTATION. Regular isotopy is the equivalence relation generated by
Reidemeister moves II and III (see Figure 1). Regular isotopy of links K
and L is denoted K ~ L. Ambient isotopy is the equivalence relation
generated by all three Reidemeister moves, and will be denoted by K ~ L.
(See [80] or [14] for a proof that this diagrammatic version of ambient
isotopy agrees with the usual definition for embeddings of links in three
dimensional Euclidean space.)

Ambient

Isotopy IIL. = -~
- /\ g \ — Regular
/ ~ Isotopy

FIGURE 1
The Reidemeister Moues

In an oriented link, each crossing has a sign e = + 1 or — 1, according
to the convention shown in Figure 2.

FIGURE 2
Crossing Signs

The writhe, w(K), of an oriented diagram K is the sum of the signs
of the crossings in the diagram. The writhe is an invariant of regular
isotopy.
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The oriented skein polynomial, Pg(z, a), is described by two axioms as
an ambient isotopy invariant:

1- P = 10
O
2. — 3 = .

1

3. PK(z,a) _—.PK,(z,a) in z[ z,z" ,a,d'] whenever

K and K' are ambient isotopic diagrams.

The three small diagrams in axiom 2 stand for parts of larger diagrams
that differ only as shown in the small diagrams.
I shall use the following formulation for P:

PK(Za a) = a—W(K)RK(Zn a)
where w(K) is the writhe of K, and Rg(z, @) is a regular isotopy invariant
satisfying the axioms:
1. RO = 1,
_ 1
R\G = a R,-N .
i - =
2 . RX Rg ZR\Z .
3' ° K z K‘ : RK

il
ol

The identity of axiom 2'. will be referred to as the Conway identity.
(If @ = 1 then Ri(z, 1) = Vk(z) is the Conway-Alexander polynomial [16].)
It is known that these axiom systems are consistent, and that they
can be used to recursively calculate the polynomaials.
I shall also discuss the “Dubrovnik” version of the Kauffman polynomial
[49]. This regular isotopy invariant, denoted Dg(z, a), is defined for unoriented
links K via the axioms:

1". Do =1, Do =ab~, D.6\=a'1D,.\.

on D/\,_Dy\= Z(DX—D)<)'

3". K= K'=» Dy =D, .

The key is to see that an unoriented crossing can distinguish two pairs
of local regions (designated 4 and B) as shown in Figure 3.
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The A regions are swept out first as the overcrossing line is turned
counterclockwise.

With this in mind, axiom 2. makes sense by associating with each
crossing on the left-hand side of the equation the corresponding splice
on the right-hand side that joins the A-regions.

The ambient isotopy invariant, Z, for the Kauffman (Dubrovnik version)
polynomial is given by the formula

Z(z,a) = a ¥ ®D(z, a).

where K is én oriented link (D forgets the orientation).
These polynomials can be calculated systematically and recursively by
using the concept of the standard unlink ([8]):

Given a universe (locally 4-valent plane graph), choose an edge and a
direction on that edge. Traverse the universe, crossing over at the first
passage through each crossing. (Upon returning to a crossing, cross under
— so leaving the choice at first passage unchanged.) If this crossing
circuit does not use up every crossing in the universe, then choose an edge
in the complement of circuits traversed so far, and repeat the process.

The final result is an unlink (each component is unknotted and any two
components are unlinked). See Figure 4.

universe standard unlink

FIGURE 4

The exchange identity (for either polynomial) expresses the value for a
given link in terms of the value for a link obtained by switching one
crossing, and the value of the polynomial on a link (or links) with fewer
crossings. If the switched link is “more unlinked” than the given link,
then this procedure proceeds inductively to calculate the polynomial.
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The value of the standard unlink is that it can be used as a basis of
comparison for the switching process. Having chosen a standard unlink,
K, with the same underlying universe as K, we can decide to switch a
crossing in K exactly when it differs from the corresponding crossing on the
standard unlink. Successive switchings then lead toward the standard unlink.

Of course, the calculation process also involves links obtained by splicing
crossings of K. For these it is necessary to also choose standard unlinks.

Each standard unlink for K is determined by a choice of base-point
and direction of travel along K. Choosing a basepoint is equivalent to
choosing an edge from the universe U for K (an edge extends from one
crossing to another). We can choose all the basepoints for the whole
calculation at once by making a template:

Definition 2.1. Let K be a link diagram with underlying universe U.
Suppose that U has n edges. A template for K is a labelling of the edges
of U from the set {1,2,.,n} when K and U are oriented. If K is
unoriented, then a template consists in a labelling of the edges of U,
together with an orientation of each edge of U. (Note that there are no
compatibility restrictions on these orientations, as in the orienting of a
link diagram where travel in the direction of the orientation carries one
through a crossing.)

A diagram obtained from K (above) by splicing some crossings can be
regarded as having extra 2-valent vertices at the sites of the splice. In this
way the template for K is regarded as a template for all diagrams obtained
from K by either switching or splicing crossings.

Let K be a given link diagram and T a template for K. The link
components of K correspond to circuits in the underlying universe U.
(Such circuits cross at a crossing, and are characterized by this property.)
Let L be a link component of K.

Definition 2.2. The index of L with respect to the template T,
I(L, T), is the least index ‘in T on the circuit corresponding to L.
Let Ind (K) denote the collection of indices of components of K, arranged
in increasing order.

With this notion of index we can specify the algorithm to compute
either polynomial:

Template Skein Algorithm
0. This algorithm produces a tree rooted at the given link diagram K,

with a collection of unlinks at its ends (farthest branches). The nodes of
this tree are link diagrams.




STATE MODELS FOR LINK POLYNOMIALS 7

1. Begin by letting i denote the least index in Ind (K).
2. Using the basepoint specified by the index i, find the first crossing

Lo

that is an undercrossing (in the direction of travel from the basepoint).
Call this crossing the active crossing.

3. Produce the switched and spliced diagrams associated to the active
crossing (two diagrams in the oriented case, three in the semi-oriented case).
Regard the diagrams so produced as nodes on the tree, connected by edges of
the tree with the source diagram K.

4. If all crossings are inactive from a given basepoint, choose the next
basepoint, j, in the order specified by Ind (K). Using the basepoint specified
by the index j, find the first crossing of components of index at least equal
to j thatis an undercrossing (in the direction of travel from the basepoint).
Produce new nodes (see 3. above) from this crossing.

5. 1If all crossings are inactive for all basepoints, then K is a standard
unlink. Call this an end-node in the tree.

6. Apply this process to each produced node until the tree is complete.
The value of the polynomial on any unlink is given by the formulas:
Ry = gV EI§IKI—1
Dy = a*®plKl-1
(K unlinked, | K | = number of components of K)
b =(a—a )z
w=1+4(@a—abz.
(This follows directly from the axioms.)

Call this tree the template skein for K relative to T. See Figure 5.

Definition 2.3. Let U be a universe with template T. A link L is said
to be a standard unlink relative to T if the tree produced by the template
skein algorithm for L relative to T consists in a single node.

Letting E(K) denote the set of end-nodes (standard unlinks) produced
by the template skein algorithm for K relative to T, we have that

RK — Z (_ 1):—(L)Zt(L)aw(L)5|L|—1
summation over L € Ex(K) (E for oriented case, E for unoriented case) and

Dy = Z (— 1)t—(L)Zt(L)aw(L)“|L[— 1

summation over L e Er(K), where 7(L) denotes the number of splices
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performed to obtain L from K, and ¢_(K) is the number of splices from a
crossing of negative sign in the Homfly case. In the Dubrovnik case, 7_(K)
denotes the number of splices that are of ‘‘B-type’’ (see Figure 3). This

formula follows directly from the exchange identity, and the form of
calculation.

The next two sections will characterize and reformulate the elements
of E(K), and thus construct the skein models.

%

AN N

@ H B

a — 20 — 20
(—2)%a (—2)%8
Ry = a— 28 — 28 + z%a — 2°8 = z2 + (za™*—a)
FIGURE 5

Template Skein Algorithm
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IIT. A SKEIN MODEL FOR THE HOMFLY POLYNOMIAL

In this section K is an oriented diagram with underlying universe U.
A template T is given for U.

Consider the template skein algorithm of section 2. At each stage in
the algorithm an active crossing produces (oriented case) a spliced diagram
and a diagram with a switched crossing. It is easy to see that once a
crossing has been switched by the template skein algorithm it remains unchanged
in all diagrams in the tree that are descendants of the switched diagram.
(The crossing becomes inactive for all the descendants.) Consequently, we
may encircle such a crossing to indicate its inactivity, as was done in Figure 5.

By the same token, consider a crossing that has been spliced from an
active crossing by the template skein algorithm. As shown in Figures 5 and 6,
if the splice occurs from a positive crossing, then in the splice — the first
passage from basepoint goes through the right hand (or lower) strand of the
splice. If the splice occurs from a negative crossing, then in the splice —
the first passage from basepoint goes through the left hand (or upper) strand
of the splice. Here right and left refer to an observer who stands between
the strands of the splice, facing in the direction of the orientation. First
passage 1s indicated in Figures 5 and 6 by a dot on the first passage
strand, coupled by a wavy line between the strands of the splice. This
location of the first passage strand is inherited by all the descendants of the
given diagram. This property follows from the precedence structure of the
template skein algorithm. (Previously spliced and switched crossings are
visited first by the algorithm, before it finds the next activity.)

FiGURE 6
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As a result of these two remarks we see that each end node in the tree
produced by the template skein algorithm is unique. That is there are no
repetitions among the unlinks produced by the algorithm. Furthermore, each
end-node has each of its spliced sites decorated either by a dot and wavy
line — indicating first passage on the right or on the left. This first
passage refers to the action of the template skein algorithm applied to the
given end-node. In each case, first passage on the right corresponds to a
positive crossing in the original link K, while first passage on the left
corresponds to a negative crossing in K.

Definition 3.1. Let K be a given link diagram. Let U be the universe
for K, and T a template for U. Let L be a standard unlink relative to T
(see Definition 2.3). L is said to be admissible with respect to K 1if at
each splice in L, the first passage of the template skein algorithm is on the
right hand strand for positive crossings of K and on the left hand strand
for negative crossings of K.

The preceding remarks may be summarized by the proposition.

ProrosiTioN 3.2. Let K be a link diagram with universe U, and a
given template T for U. Then the admissible unlinks relative to K are
in one-to-one correspondence with the end-nodes of the template skein algorithm
applied to K (using the template T ).

We can now write the state summation
RK — Z (_ l)t—(L)Zt(L)aw(L)6|L| -1 ,

summation over L e A(K, T), where A(K, T) denotes the set of admissible
unlinks relative to T. As in section 2, t_(L) denotes the number of splices of
negative crossings in K, (L) denotes the number of splices of crossings
in K needed to obtain L. w(L) denotes the writhe of L,| L | denotes the
number of components of L, and 8§ = (a—a~')/z

This state summation can be expressed symbolically by the equations:

R/\ﬂ‘= ZRX 4 aR)CI + 8.""1R)<A R
_ -1
R\/Z{_—zRX+aR>§+a R)ﬁ'

Here the symbol >§ means the same as /\/—: except that I use this

notation to differentiate a state in A(K, 7) from the original link XK.
Expansion via these equations leads to a large collection of state diagrams



STATE MODELS FOR LINK POLYNOMIALS 11

many of them inadmissible. However, an inadmissible diagram has some of
its vertex weights equal to zero:

R = Y <K|L>3H™!

LeD(K, T)

2, (K1X2)
(XYY =0, (3ZIX7) -

< anyl><> a , (anyl><> = a !

Here D(K, T) denotes a set of diagrammatic states (obtained by replacing
crossings of K by one of the four local glyphs indicated by the expansion
equations). Each state in D(K, T) must satisfy:

(XX 133)

i
o

i
|
N

i
il

1. Dotted segments must denote first passage relative to the template T.

2. Over and under-crossing indications ( ><' ’ )< ) must indicate first

passage relative to the template T. Notations such as

O3 1x]) - -

denote the local vertex weights. <K | L> denotes the product of vertex
weights from the sites of the diagrammatic state L.

Note that D(K, T) and A(K, T) are in one-to-one correspondence. Hence
this diagrammatic description of the model is equivalent to the summation
involving the admissible unlinks.

In these expansion formulas the writhe contribution is picked up by the
coefficients @ and @ ~!'. The decorations and over-passes on an admissible
state must be compatible with the template and circuit structure. Thus for the
template

the state
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is admissible and contributes (—z)*8 to the summation for the negative trefoil

IV. A SKEIN MODEL FOR THE KAUFFMAN POLYNOMIAL

The work of section 3 goes over essentially verbatim for the Dubrovnik
version of the Kauffman polynomial. Recall that in this context a template
is obtained by first orienting the edges of the universe U underlying the
unoriented K, and then labelling the edges of U.

The chart in Figure 7 shows the cases of admissible splices at crossings
(with respect to the skein template algorithm). Each splice has been labelled
with its corresponding vertex weight. Note that a splice is admissible if it
indicates the form of passage that is obtained from an approach to the
crossing that meets it as an under-crossing. Such approaches give active
crossings in the skein template algorithm.

I have retained only the arrow for the first passage after each split,
because the orientation on the other edge may change under the direction
of the template. The crossings are oriented because each end-node (unlink)
produced by the skein template algorithm acquires an orientation from the
directions of travel given by the template.

X
L~

/ e

FIGURE 7
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In order to understand the pattern of these admissible splices, consider
an unoriented crossing

I have labelled two of its regions 4. These are swept out by turning the
overcrossing line counterclockwise. The other two regions are labelled B.
The A-splice of the crossing is that splice that joins the two regions
labelled 4. The B-splice joins the two regions labelled B.

We then see that a passage is admissible in the A-splice if it occurs on
the right for an observer who stands in between the strands, facing in the
direction of the passage from basepoint. Similarly, the admissible B-splices
are on the left for such an observer.

Call an admissible splice negative if it is of B-type. (This receives a
(—z) in Figure 7.)

With these definitions we have

t(L) = number of splices to obtain L from K .

t (L) = number of negative splices .

Au (K, T) = set of admissible unlinks relative to K and T (here K is
unoriented).
Then the Dubrovnik polynomial is given by the formula

Dy = Z (_I)I‘(L)Zt(L)aW(L)HILI—l
LeAu(K, T)

(R=1+(a—a"1)z).

As a state-expansion we can write

D/\, = z(D}: + D.:() - Z(DM+ DM)
+ a(Dx, + DP(+ DN+ D,§<)
+ éi(DK + D% + D)<+ D§<).

Once again,

DK = Z <KIL> H]Ll—l

LeAu(K, T)
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where <K | L> denotes the product of vertex weights (all relative to the
given template). Independence of the template follows from the well-
definedness of the polynomial itself.

Remark. It would be very interesting to know the relationship between
this state model for the Kauffman polynomial and the extraordinary model
of Jaeger [34]. Jaeger gives a state expansion where the states are a collection
of oriented knots and links. Each state is itself evaluated via the regular
isotopy version of the Homfly polynomial.

V. GRAPH POLYNOMIALS

The two skein polynomials (Homfly and Kauffman) each have three
variable extensions to rigid vertex isotopy invariants of 4-valent graphs
imbedded in three-space. This construction has been announced in [45].
(See also [56] and [74].) Our skein models involve 4-valent graphs implicitly,
and so give rise to a natural definition for these extended polynomials as state
models.

Let the new variables A and B be given, with z = A — B the usual z
for the skein polynomials. The extended polynomials are then defined by
the axioms:

HoMFLY EXTENSION AXIOMS

o = R
e Bop = dinay + By

R\/I: BR/\_z+ RE,
2 RK = usual regular isotopy
Homfly polynomial if K is
free of graphical vertices ().

KAUFFMAN EXTENSION AXIOMS

1. DXZADx‘f'BD)("}'DX,
D

K= usual regular isotopy

Dubrovnik polynomial if K is

free of graphical vertices (X).
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In each case, these axioms are taken as the definition of the polynomial
in the case of the presence of graph vertices. That is, one rewrites

RX‘ = R/\ﬂl - AR/\i 5
R)ﬂ = Ry;‘ - BR y‘ .
(Note that R/\riA— R\/;L= (A - B)sz sz.)

as the (recursive) definition in terms of an expansion involving the standard
link polynomial (evaluated on a collection of links obtained by removing
graph vertices and replacing by splices or by crossings). It is easy to verify
that the resulting graph polynomial is well-defined on the basis of the theory
of the Homfly or Kauffman polynomial.

By using the skein models we can give a direct formula for the evaluation
of the extended polynomial on a planar graph. (See below.) This gives another
point of view for these polynomials. In this view the axioms for the extended
polynomials give state expansions for them whose states are plane graphs.
Each plane graph state contributes a polynomial to the summation — weighted
by A’s and B’s that tell how it was made planar by projecting and splicing.

In this view, all the complexity of the skein models for these polynomials
has been absorbed into the extended polynomial evaluations for plane graphs.

Here are the explicit formulas for the Homfly case. I leave the case of
the Kauffman extension to the reader. (See also [56].)

LemMMA 5.1. Let G be a plane oriented 4-valent graph. Let U(G)
be the set of graphs obtained from G by splicing (oriented splice) a subset
of vertices from G. Let T be a template for G (regard G as a
universe and use the notion of template in section 2 ).

For each H in U(G) give H the structure of a standard unlink
L = L(H) relative to the template T. Let t(H),t.(H),t_(H), denote the
number of splices, positive splices, negative splices of L(H). Let w(H)
denote the writhe of L(H). Then

RG = Z (_1)t(H)At—(H)Bt+(H)aW(H)8|H|—1

HeU(G)

where
6 =(a—a Yz = (a—a"")/(A—B),

and | H| denotes the number of crossing circuits in H (i.e. the number
of link components in L(H)).
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Proof. We give a state expansion for the extended polynomial by using
the axiom. In abbreviated form this gives

RX = R/\z‘— AR/\—js ‘
= ZRX+ a.R>§+ a Rﬂ
- A(Rx+ Rx)
" N _ -1 .
o R)g ( B)R:ﬂ-}- ( A)R:{:+ aRyg+ a R)ﬁ

(z = A - B).

Hence, the vertex weights for R; are (—B) for a positive splice, (— A)
for a negative splice, and otherwise the same as in the model for the
Homfly. This completes the proof.

In the case of both D; and R for plane graphs it would be good to
verify their properties and definedness directly and independently of the knot
theory. The knot theory of the (extended) Homfly and Kauffman polynomials
would then be seen to rest on this theory of plane graph polynomials.

An example.

1.
1
, T (template)
G
@ , @ admissible states
a (-K)é

Ala—a™ ') Aa ' — Ba

A—B A—B

..RG:a

(Rxf (—B)R1+ (-A)R:ng aRyz+ a'1R><\).
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#‘
T (template)

G

~Ba -Aa (-4)°%8 S
. B 4 PER (a—u 5
. R =—a—.a+(r+)"4_B

= [(a—a Y+(Bla—Aa "] (A-B).

Aa~'— Ba (a—a )+ (B*a—A%a !
—_ A e + i =

Here the rational function is not invariant under the (simultancous) substi-
tution of @ by a~! and interchange of A4 and B. This reflects the fact
that the graph embeddings G and G* are not rigid-vertex 1sotopic.

It is worth mentioning the planar graph polynomial in the Dubrovnik
case. The result is

Dag = (-)Z(X) + (-B)R(>) +W (),
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where

X(X) = DH+ Dm+ D:f+ D:(,
R(X) = DN+ Dy + Dx+ D:(

and

W) = af Dyt + Digt + D + D, ]
+ 3'1[D)§ + D% + DX+ Dx] .
A state in this expansion is obtained by first splitting (in any way) the vertices

of the given unoriented four-valent plane graph G. The vertex weights are then
determined by the template, as illustrated below.

s L
&)G 3T @ «&—>» (-4)°(-B)
L

If <G|S> denotes the product of vertex weights for a given state S,
then the polynomial has the form

Dg =) <G|S>usl"* n =1+ (a—a H(A-B).
S

Proof of these formulas from the extension axioms follows just as in the
Homfly case.

VI. THE CoNWAY POLYNOMIAL
The skein models give a very elegant formulation of the Conway poly-
nomial ([16], [41]) (compare [33])
Vi(z) = Rglz, 1)
Specializing the formula for the skein model we have

Vild) = 3 (— 1z
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(summation over Le AK. T),| L | = 1),

Vi

Ve

4Vy
9

ZVX’
_ZVB:

+
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V2

Vg

\<><H>CV>C)1

(Notation of section 2.)
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Note that each state in this model has a single crossing circuit. Hence the

template can be replaced by a single choice of base-point.

Writing

Vi(z) = ag(K) + a,(K)z + ay(K)z* + -,

we have

a,(K) = ) (=1 ~%®

(summation over L€ A(K, T), | L| = 1, t(L) = n).
Note that the second coefficient, a,(K), is the linking number of K
when K is a 2-component link. The coefficients are generalized (self-)linking

numbers.

It is worth comparing this model with the model for the Conway
polynomial given in Formal Knot Theory [42]. 1 shall refer to the latter
model as the FKT model. The FKT model sums over all Jordan Euler Trails
on the universe underlying the link diagram K. These trails result from

splicing the diagram K at each crossing in either oriented

X —» X «»

or non-oriented

~ < e » <

\J
~

fashion. A choice of basepoint determines the vertex weights via the rules:

1. The unoriented splice has weight one.

(X3~

(7=
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2. Notation.
Let

£

mean that the first passage through this site from the basepoint is in the

direction of the arrows.
Let

mean that the first passage through this site from the basepoint is opposite

to the direction of the arrows.
Then the weights are:

XIE>=w ,XIxX>=-8B
CAIXED> =8B

These vertex weights give the state expansion formulas

V\ iji'—B VD: +VM
Vx =B ij) —WVEG +V}m4

with z = W — B, and WB = 1 (for topological invariance). Note that

= +
is a tautology, and hence the Conway exchange identity
V/\); - VX = ZVX

follows at once.

Definedness and properties of this model rest on a combinatorial result (the
Clock Theorem [42]) from which it is straightforward to verify invariance
under the Reidemeister moves. Furthermore, the model extends to a state
model for the multi-variable Alexander-Conway polynomial (one variable for
each component in a link). The FKT model is very closely related to
Alexander’s original approach to the polynomial via the Dehn presentation of
the fundamental group of the link complement [6].
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The FKT model has a number of intriguing features. It calculates a
determinant of a generalized Alexander matrix. It is the low temperature limit
of a generalized Potts model [57].

Is the FKT model a reformulation of the skein model for the Conway
polynomial? There are a number of ways to try to generalize the FKT model
to obtain a model of the Homfly polynomial. An answer to this question would
shed light on the relationship of the FKT model and the Homfly polynomial.
(And consequently on the relationship of the Homfly polynomial and the
fundamental group of the link.)

VII. YANG-BAXTER MODELS

I now turn to state models for specializations of the Homfly and Kauffman
polynomials that arise from solutions to the Yang-Baxter Equation [10]. These
models were devised by Vaughan Jones (Homfly) ([40]) and Volodja Turaev
(Kauffman) ([93]). (See also the series of papers ([1], [2], [3], [4], [5], [64])
by Akutsu, Wadati and collaborators.) The reformulation of these models as
given here is due to the author (compare [55], [58]).

The Yang-Baxter Equation arises in the study of two-dimensional statistical
mechanics models [10] and also in the study of 1 + 1 (1 space dimension,
1 time dimension) quantum field theory ([25], [100]). In the latter case, the
motivation and relationship with knot theory is easiest to explain.

Regard a crossing in a universe (shadow of a link diagram) as a
diagram for the interaction of two particles. Label the in-going and out-going
lines of an oriented crossing with the “spins” of these particles. (Mathe-
matically, spin is a generic term for a label chosen from an ordered index
set #. In applications it may denote the spin of a particle, or it may
denote charge or some other intrinsic quantity.) The angle between the
crossing segments can be regarded as an indicator of their relative momentum
(rapidity). For each assignment of spins and each angle 0 there will be a
matrix element that, in the physical context, measures the amplitude (complex
probability amplitude) for the process with these spins and rapidity.

The S matrix, S(0), is said to be factorized if it satisfies the equations
shown in Figure 8. This matrix equation is the Yang-Baxter Equation.
Physically, it means that amplitudes for multi-particle interactions can be
calculated from the two-particle scattering amplitude.
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2. Si0) SE0+0) SK®)

i, j, kes

= ). Si(0)Sg0+0)Si6)

i, j,kes

Yang-Baxter Equation

aq b
«—» §20(0)
6
c d
FIGURE 8§

As is evident from Figure 8, the Yang-Baxter Equation expresses an
invariance related to the type III (triangle) Reidemeister move in knot theory.
Figure 9 illustrates the beginning of this correspondence. In this Figure 1 have
matched the interaction picture for the S-matrix with a crossing of positive
type, and have matched a related matrix, S(8), with a crossing of negative
type. Here we assume that the matrix product

SE(0) Si(—0) = 828
(sum on i and j)
is the identity matrix (indicated with Kronecker deltas above). In this form,
both crossing and reversed crossing measure the same underlying momentum

— corresponding to the (counterclockwise) measure of the angle between the
crossing lines.
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Switching the crossing corresponds to this step in inverting the S-matrix
(that must be combined with a reverse momentum difference to actually
obtain the inverse). In the case of a special S-matrix (see below and Figure 11)
we will accomplish the momentum change with extra interactions (angles in
the diagram) so that a crossing and its reverse can cancel.

X «» S(9)

ry _

} S(0) S(—6) = I
><‘«—» S(6) | .

® )

FIGURE 9

It is a curious and deep fact that there is this correspondence between
a topological move for weaves in three-dimensional space and the facto-
rizability condition for the S-matrix.

In fact, by assuming that the solution to the Yang-Baxter equation
has a special form, one can produce state models for link invariants!
In the first version discussed here I shall use piecewise linear (pl) link
diagrams. In a pl diagram it will be assumes that each segment of a
crossing forms a straight line at the crossing. Along with crossings there
are isolated vertices

The angle at a vertex is measured as the angle between the incoming

segment and the outgoing segment with direction as shown in Figure 10.

€—» Yogsx €€—»

FiGUure 10 '

One may think of the isolated vertices as interactions with an external
field that causes the trajectory of the particle to change direction.
It is assumed that spin is preserved at all sites of interaction. Thus,

[ L R OV S
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at a 4-vertex we have a + b = ¢ + d, and at a 2-vertex we have that
the incoming and outgoing spins are identical.
We shall assume that S(0) has the following special form:

SE(B) = REjp-0r

where A is an (as yet) unspecified variable, and R is an invertible matrix,
with no 6-dependence. We also assume that a + b = ¢ + d whenever
R £ 0. Call such an S a special S-matrix.

Note that R = S(0) satisfies the Yang-Baxter equation without the angular
parameter. Let R denote the inverse matrix to R, and let S be defined

so that S(0) = R:
S&0) = R& A0,

Remark. A little Euclidean Geometry shows that the oriented type II
move works perfectly with respect to this definition when S is associated
with a crossing of negative type. See Figure 11.

Define-the following vertex weights for piecewise-linear link diagrams as
indicated in Figure 12. In this Figure the local state configuration is shown
in the right-hand of the bracket, and the crossing type in the left-hand half.

E+pP+mM=

6+ =pn—-pB
a+b=c+d
c+d=¢e+ f

(spin conservation)

= ao. + be + (d—a)b
+ uc + Bd + (f —o)d
+yve+nf =0

= product of vertex
weights for diagram
on left 1s
R R

= invariance under pl

type 11 move
(by RR = I).

e \ &
Geometry of Oriented 11 — Move

FiGURrE 11
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XS
o7 S
< 5> a}:\> = 9.40/2n

Vertex Weights

FiGUrRg 12

For this Yang-Baxter model, a state of the oriented universe U under-
lying a given link diagram K is any assignment of spins (from the index
set #) to the edges of U (modulo conservation of spin).

Given a diagram K and a state o, let <K |o> denote the product
of these vertex weights. Let <K > denote the sum of such products taken
over all (spin-conserving) states.

LemMma 7.1. Let S(0) be a special factorized S-matrix. Let the state

summation
<K> =) <K|o>
(e}

be defined on oriented link diagrams K as explained above. Then, if
R = S(0) satisfies the additional condition
c—j f-i

(+) > REREAZ L2 =3595¢

i, jes

< S(—m) S(n) = I  where
S =S%, Si =S8k
< Cross Channel Inversion
< Inversion under II-move with reverse orientation

then <K> is an invariant of regular isotopy.
(See [40] or [58] for a proof of this lemma.)

Remark. There is a corresponding state model and lemma for unoriented
links.
The lemma shows that any angle-free, invertible solution R of the

Yang-Baxter Equation gives rise to a regular isotopy invariant of knots
and links (by choosing A to satisfy (x)).
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We now exhibit two such solutions in a form that emphasizes their
formal similarity to the skein models. In these models the angle (rapidity)
terms can all be relegated to counting the number of circuits in a state (with
multiplicity). In the Homfly case the model takes the form

(RO =28 +w (XD + (%)
(G =22 I + O

Z=w—w™1

Note the similarity of the formalism with that for the skein model.
Here however, I adopt the convention that the dotted segment has a smaller
spin than the un-dotted segment. The local state without dots has equal spins
on its lines. Spins must be different for crossing lines. The vertex weights
of the expansion correspond to a particular solution of the Yang-Baxter
Equation.

In this model a state o is a splitting of the universe (i.e. splice a subset
of its crossings) and a labelling of the circuits by spins. (The circuits are
not allowed to cross themselves.) The value of a state is All°ll

where lo| = 'Z_t label (C) - rot (C)
Cing
with
rot(Q) =+ 1, rot(®)= —1.
e.g.

5 | |
@vz)lﬁll = 5(=1) = 3(-1) = - 2.

and label (C) is the spin assigned to the (edges of) the circuit C. In this
model the state value Al°ll is a summary of all the angle contributions in
the pl formulation. The weights from the set W = {z, —z, w, w=1,0, 1} are
the values taken by the angle-independent part R of the S-matrix. This model
is expressed for arbitrary link diagrams in the form

<K> =) <K|o> Alel

where <K | o> denotes the product of vertex weights from the set W
arising from the expansion given above.
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A particularly nice model occurs for index set in the form
{—n—n+2,.,n— 2,n}  with A =w.

This gives a series of one-variable specializations of the Homfly polynomial.
(See [40], [58], [93].) Is there a Yang-Baxter model for the full Homfly
polynomial ? This is an open question.

A similar approach works for the Dubrovnik form of the Kauffman
polynomial. See [58], [93]. The expansion formula has the appearance.

[X] =z [Z)-z P+ wK]+w Py + [X]

(It is understood that reversing the orientation of a line is accompanied
by the negation of its spin.) Once again, the dot on a line means that
it has smaller spin.

VIII. APPLICATIONS AND QUESTIONS

This section is devoted to a few applications of the skein and state
models and related questions.

1. Let V4 denote the Conway polynomial. The skein model is embodied
in the formula of section 6:

Ve = (— 1)2—(L)Zt(L)
: L, \Lz|= 1

from which we see easily that
maxdegVy <V — S + 1 = p(K)

where V is the number of crossings in the diagram K, S is the number
of Seifert circuits (the set of circuits obtained by splicing all crossings
of K). On knows that p(K) = rank (H,(F)) where F is the Seifert spanning
surface [42] corresponding to the diagram K. If K is an alternating link
then max deg Vy = p(K) [76]. This is generalized to the class of alternative
links in [42], using the FKT model. Is there a proof using the skein model?!)

In the case where all the crossings are of positive type, we see from
the skein model that all terms of Vg are positive, and it is then easy
to see that the highest degree term is of degree p(K).

. 1Y Note added in proof: A proof using the skein model for the theorem on alternative
links has been found by John Mathias — University of Maryland, May 1989.



28 L. H. KAUFFMAN

2. Similar remarks apply to the Homfly model of section 3. In the case of
the Yang-Baxter model for the Homfly polynomial given in section 7,
it is easy to see that the highest z-degree is p(K) when K is positive
— this time by constructing an appropriate spin state.

3. Thistlethwaite [89] proves that the writhe w(K) is an ambient isotopy
invariant for K alternating and reduced. It would be useful to see a proof
of this result using the skein model for Dy (section 4).

4. The Alexander polynomial Ay is given by the formula

Al) = Ve(\/1=1/4/1)
= ¥ ()T e=1/o®

L =1

where = denotes equality up to sign and powers of . One knows ([23])
that if K bounds a smooth disk in the upper 4-space ((x, , z, t) with t>6)

then
A(t) = fOfE™Y)

for some polynomial f(¢). Can this fact be deduced directly from the skein
model or from the FKT model? A solution should generalize to give new
information about the full skein polynomial behaviours on slice links.

IX. RELATIONS WITH MATHEMATICAL PHYSICS

I have deliberately included a description of the Yang-Baxter models in
this paper in order to raise the question of the relation of the skein models
to mathematical physics. The Yang-Baxter models can be regarded as averages
of scattering amplitudes over all possible spin states — hence .as discrete
Feynman integrals, or as partition functions for two-dimensional statistical
mechanics models. The FKT model for the Conway polynomial can be seen
[57] as the low temperature limit of a partition function of a generalized
Potts model.

META-TIME
If we interpret the FKT model or the skein models in a particle
interaction framework, then a curious and interesting issue arises:

Think of a particle moving forward and backward in “time” on a given
universe. The “same” particle may traverse a given site (crossing) twice.
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Locally this appears as an interaction of two distinct particles. But in the
mathematical trajectory one of these particles came through the site “first”
(all dependent on the basepoint or template). And the “way” the particle
comes through first may make it particle or anti-particle on this “first
pass”.

In the skein and FKT models the local vertex weights depend upon
this aspect of global trajectory structure. The skein models care which strand
is the locus of the “first pass” and the FKT model needs to know whether
the first pass is a particle (with the local time-line) or an anti-particle
(against the local time-line). Remarkably and fortunately for knot theory,
the total summation over all trajectories (denoted <K> in both models)
is independent of the choice of template. Thus the first objection to
considering “meta-time discriminations” disappears in the averaging. These
models solve an issue of invariance that must arise for scattering amplitudes
that include the issue of meta-time ordering. It would be very useful to see
a parallel problem on this theme in mathematical physics proper.

INTO THE THIRD DIMENSION

Find definitions of the invariants that are intrinsically three-dimensional
— that do not depend upon the use of a diagram. This is solved classically
for the Alexander polynomial (see [12], [14], [43], [82] for various accounts).
The problem remains open in its full generality for the other skein
polynomials.

Witten [99] has suggested a definition as the integral over all gauge
connections of the trace of the holonomy of the connection — along the
knot. The measure in the integral is weighted by the Chern-Simons Lagrangian.
Witten’s work may well be the desired answer to the question of an
intrinsic definition. If so, then there arises a host of questions about the
relationship of the holonomy and state models approaches. (Compare [71],
[83], [96].)

In the case of the skein models, the relationship is direct. Once the
exchange relation is proved from properties of the holonomy, the skein
model follows just as we have constructed it here. The question about
“meta-time” is then transposed to the more concrete matter of keeping
track of orders of computation of holonomies on circuits in the diagram.

More generally, the possibility of intrinsic models raises the question
of the nature of a crossing in a link diagram. From the point of view of
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the plane, a crossing is where the plane curve interacts with itself or with
another component. From the point of view of space, the crossing is two
distinct points in the space-curve that are projected to the same point
in the plane for a given direction of projection.

The relation of these two points of view is seen in sharp relief in the
Gauss definition of the linking number of two curves A4 and B in
three-space:

Ik (4, B) = H Gds dsp

AxB

Here the Gauss Kernel ¢ is given by the formula
G = e (TyxTy/lel’

Tp

where e is a direction vector between two points, p and ¢, one from each
curve. T, and Ty are unit tangent vectors to the curves at these points.

Note that the Gauss kernel vanishes whenever the direction vector and
the two tangent vectors occupy the same plane. Thus if we use the Gauss
definition to calculate the linking number for a nearly planar diagram, then
the result is a sum of vertex contributions (the neighborhoods of the vertices
are the only contributors to the integral). (See [27], [97].)

It appears that the Gauss kernel holds a clue to how the state models
(also built from local vertex contributions) can be defined three-dimensionally.
In such a model, states would be defined directly on the space curve, and
vertex weights would be replaced by weights of self-interaction of the knot,
modulated by the Gauss kernel.

To see the approximate form of such a model, suppose that we are
generalizing the Yang-Baxter model for pl diagrams. Rewrite the model so that
it is in exponential form

<K> =) ekl

[




STATE MODELS FOR LINK POLYNOMIALS 31

Then sums of vertex weights appear in the exponents. These divide into

weights from 2-vertices (corresponding to curvature) and weights from

interactions. The interaction weights depend upon angle and local spins

— all information that is available on projecting in a given direction e.
This suggests the form of a model as

<K>=J‘dcexp(jj‘ [p,q|0]g+j [plcs])

where the problem of taking the limit over subdivisions of the space curve,
and the definition of the limiting state space is certainly unsolved.

The proposed model is designed as a generalization of the planar models.
The crossings are replaced by pairs of points on the curve, and the Gauss
kernel appears, as in the linking number. In a piecewise-linear approximation
to the model, the space curve is divided into straight-line segments. A
state assigns a spin to each segment. If spin remains unchanged at a vertex,
then the vertex contributes a simple angular term, as in the planar case.
If spin changes at a vertex, then this vertex must be paired up with another
vertex so that the pair can be regarded as under-going a spin preserving

interaction.
W
b/\\d

a+b=c+d

This is the generalization of the crossing in the planar case. A state is
admissible if it is configured with such self-interactions allowing spin conser-

vation. The three-dimensional approximation sums over all such admissible
states.

APPENDIX ON STATE MODEL FORMALISM

This appendix is a short note on the formalism I use for expressing
state models.

The bracket polynomial [41] is defined via equations of the form

(D) = a(Xy+ 3) O
(k) = a(x)
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(It is a regular isotopy invariant when B = (1/4) and — d = A? + A7 2)
Here the small diagrams stand for parts of larger diagrams that differ only
as shown in the small diagrams. Since all diagrams are of the same type
(unoriented link diagrams) these equations are easily understood.

On the other hand we have used formalisms in this paper of the ilk

_ -1
R/\;: =2 zR): +aR>€ + a R)<.

Here the small diagrams on the right-hand side of the equation replace a
knot-diagrammatic crossing. The large diagrams on the right go out of the
category of link diagrams to an appropriate category of labelled graphs.
As a result (for example), one may legitimately ask: What is the value of
the R-polynomial on the “mixture” shown below ?

®

To answer this type of question in all cases I take the following point
of view: Equations such as

-1

—ZRZ +aR>§ + a R><

-1

Z—ZRX +aR>< + a R><\

are a recursive algorithm for expressing R as a sum of evaluations of
decorated graphs — all of whose knot-theoretic crossings have been replaced
by one of the choices in these equations. A further rule must be given to
specify the values of the decorated graphs (the “states”) produced by this
algorithm. (In the case of the R-polynomial this rule involves using the
template (Section 2) to determine if the graph is admissible. If so, then its
value is 811! where | S| is the number of circuits in the state S.)
Thus

R

R

X A
|

R@z ZR(@’-{~ GR@-F a‘lR@

=28 +a !

for the template
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There are many instances of this sort of expansion outside of the
theory of knots and links. For example, the following expansion (compare [78])
for trivalent plane graphs G

gives states that are locally four-valent plane graphs. If the value of a state S
is taken to be three raised to the number of crossing circuits in S, then [G]
is the number of colorings of the edges of G with three colors so that three
distinct colors meet at each vertex of G. The existence of such a coloring
for a trivalent plane graph is well known to be equivalent to finding a
four-coloring of its faces so that no two faces that share an edge receive
the same color. It is a delicate matter to determine when [G] is non-zero.

[@]=100]-[00]=3* — 3 = 6.

Other conventions, more closely related to tensor formalisms are discussed
in [78] and [58].

In general, these pictorial expansions are a way to express the vertex
weights of a model in a fashion that is easy to relate with the geometry
of the diagrams themselves.
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