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§3. The four vertex theorem in R2

Let y be a closed embedded curve on R2. The Euclidean curvature k is

defined and so it must have a minimum and a maximum which give two

vertices on y. (Indeed the number of local minima must be the same as the

number of local maxima, so that the number of extrema is even.) Next we move

y by a Möbius transformation so as to send one of these extrema to oo, and

in such a way that the curve becomes asymptotic to the x-axis. Now k(s) 0

as ± oo, and the theorem of turning tangents ([6], p. 37) says that

j k(s) ds 0. It follows that k cannot have just one maximum or just one

minimum for if so it would have a fixed sign and then the integral could not
be zero. Thus y has at least 2 extrema in addition to the one at infinity. But
since the total number of extrema is even, there must be at least four of them,
and hence four vertices.

There is a subtle point which we have glossed over in this argument. The

vertices come in two types. As well as the extrema of k (the "honest" vertices)
there may also be non-extremal critical points of k. The above "proof" has

used the fact that not only are the vertices inversive invariants, but so too are
the isolated extrema. Whereas this is indeed true (as is implied by equation
4.3 of the next section), it suffices to note that the non-extremal critical points
of k are unstable phenomena and each of them may be eliminated by a

deformation of the curve with support in a small neighborhood of it. One may
thus assume that all of the vertices of y are extrema, whereupon the above

proof stands as is.

Remark 3.1. The reader may compare the above proof to that of [10],
where the four vertex theorem is obtained by using a Möbius transformation
to send a non-vertex point to infinity.

§4. A GENERALIZATION OF THE INVARIANCE OF CO

Let (M, h) be a Riemannian surface with metric h, and let y be a curve
on M with geodesic curvature Kg. We can ask whether the 1-form along a
curve y given by

coY V\k^\ ds
is a conformai invariant. More precisely, let T: (Mx, hx) -> (M2, h2) be a

conformai map and let yl be a curve on Mx ; is it true that

(4-1) T*(c0vp(Yl)) coYl
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