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GAUSS SUMS AND THEIR PRIME FACTORIZATION

by Jan BRINKHUIS

INTRODUCTION

The prime factorization of Gauss sums associated to a finite field of
p elements, with p a prime number, plays a fundamental role in the theory
of cyclotomic fields. Therefore it is desirable to have a proof which is as
simple as possible. The usual proof, as given for example by Weil in [W],
proceeds by determining the leading term of the local expansion of such a
Gauss sum in each completion above p of the appropriate cyclotomic
field. This requires some relatively delicate manipulations with binomial
coeflicients. The new proof which is offered in the present paper avoids
this completely: instead we proceed by deriving the prime factorization as
a formal consequence of four basic properties of Gauss sums (they are
listed in proposition (1.2)). The resulting proof is very easy to memorize,
in fact it is probably the simplest possible one. The novel idea which
gives rise to the simplification is a general, almost trivial observation on
inertia groups, which sometimes leads to an effortless determination of
discrete valuations modulo a specific positive integer (see lemma (4.3) and the
discussion following it).

It seemed appropriate to include also an introduction to one of the
main applications of the prime factorization of Gauss sums, the annihilation
of ideal class groups by Stickelberger ideals. In our presentation of this

application, we let the annihilator ideal of a group of roots of unity play
a central role.

1. GAUSs SUMS AND SOME OF THEIR PROPERTIES
Let Z be the ring of rational integers, Q the field of rational numbers

and_() an algebraic closure of Q chosen once and for all. Subfields F
of Q of finite degree over Q are called algebraic number fields. For each
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algebraic number field F the integral closure of Z in F is called the ring
of algebraic integers in F. Let p be an odd prime number. We choose a
primitive p-th root of unity {, in Q. Let F, be the finite field of
p elements, that is, F, = Z/pZ. For each commutative ring R with unit
element, let R* be the group of invertible elements in R. Let yx be a
non-trivial multiplicative character on F,, that is, a non-trivial homomorphism
from F¥, which is a cyclic group of order p — 1, to Q*. Let m be the
order of , then m > 1 and m|p — 1, that is, m divides p — 1. We associate
to y the following number in Q, called the Gauss sum of y,

(1.1) G = xx"NE;

where x runs over F}. Our aim is to determine the prime factorization
of G. We start by recalling and verifying four properties of G; after that
we can forget the explicit formula (1.1) as we will only use these four
properties of G to obtain its prime factorization. Before stating them below
in proposition (1.2) we first introduce some notation.

Each action of a group I' on a field F will be denoted by the
exponential notation: r¥ is the image of r under the action of y for
each yeI and each re F. Whenever such an action is given we will
extend the action of I' on the multiplicative group F* by Z-linearity
to an action of the group ring ZI' on F*; we will denote this action also
by the exponential notation. Thus for each element A = Z{nyy of ZI'
where y runs over I' and where n, e Z for all yeI, and for each re F¥,
the element r* is the element Hy(ry)”~r in F* where y runs over I'. For
each neN let Q(n) be the n-th cyclotomic field, which 1s defined to
be the algebraic number field generated over Q by the n-th roots of
unity. For each Galois extension of fields F/E let Gal(F/E) be its Galois
group. As m|p — 1, the integers p and m are relatively prime and so
Gal (Q(pm)/Q) = Gal(Q(p)/Q) x Gal(Q(m)/Q). We view the two factors of
this product as subgroups of Gal(Q(pm)/Q). In other words, we identify
Gal (Q(p)/Q) with Gal(Q(pm)/Q(m)) by letting each o € Gal(Q(p)/Q) act
trivially on the m-th roots of unity and, similarly, we identify Gal (Q(m)/Q)
with Gal (Q(pm)/Q(p)) by letting each te Gal(Q(m)/Q) act trivially on the
p-th roots of unity. For each ne N one defines an isomorphism from
(Z/nZ)* to Gal(Q(n)/Q) by sending each ie (Z/nZ)* to the automorphism
of the field Q(n) which acts on the n-th roots of unity by raising each of
them to the power i. For each x e(Z/pZ)* we denote the corresponding
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element of Gal(Q(p)/Q) by o, and for each ye(Z/mZ)* we denote the
corresponding element of Gal(Q(m)/Q) by t,. If x e (Z/pZ)* and if keZ
is a representative of x, we will sometimes write G, instead of o, ; we make a
similar convention for the elements of Gal (Q(m)/Q). Now we state and
verify those properties of the number G which we will use to determine
its prime factorization.

(1.2) PropoSITION. The Gauss sum G as defined by (1.1) has the following
properties

1) GeQpm)

(i) Gox~!=9y(x) forall xeF;
(i) G is an algebraic integer
(iv) G|p, thatis, G divides p.

Proof. (i) and (iii). These properties follow immediately from the defi-
nition of G as a sum of roots of unity of order dividing pm.

(i) Let xeF¥. Then G°* = ) x(y ")()*, where y runs over Fj,

replacing y by x~ 'y one gets xx)i x(y~ 1%, that is, y(x)G. Therefore
Go~! = y(x), as required.

(iv) We take the product of G = ) y(x "){} and its complex conjugate
H = Z x(y {,” where x and y run over Fj. This product equals
Z 'y)377, replacing y by xy one gets

2 X =2 I Ly ]

where x and y run over F}. Now we let, in the inner sum of this
expression, x run over the whole of F, instead of over F%. Then the
value of the expression does not change, as Zyx(y) = 0 where y runs over
F ¥ -here we use that y is non-trivial. If we now use the following formulas

YLy =p fu=0
=0 ifueF%

where v runs over F,, then we get that the product of G and H is

equal to p and so, as H is an algebraic integer, we conclude that G
divides p, as required. []
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2. THE PRIME FACTORIZATION OF p IN Q(pm)

The next thing to do is to recall the prime factorization of the prime
number p in the field Q(pm) and to introduce a notation for the primes of
Q(pm) above p which is convenient for bookkeeping purposes. The prime
number p ramifies completely in Q(p), in fact p ~ ({,—1)?~ ! where ~ denotes
equality up to a factor which is an algebraic unit. The prime number p
splits completely in Q(m), as p = 1 mod m. These two facts determine by
ramification theory the prime factorization of p in Q(pm): the prime number p
splits completely in the extension Q(m)/Q and each prime in Q(m) above p
ramifies completely in the extension Q(pm)/Q(m). This implies moreover that
for each prime Q in Q(pm) above p its residue field is ~ F, and that the
group Gal (Q(pm)/Q(m)), which we have identified with Gal (Q(p)/Q), is the
inertia group of Q in the extension Q(pm)/Q, that is, it consists of the
automorphisms of the field Q(pm) which leave Q fixed and which moreover
induce the trivial automorphism on the residue class field of £ (this last
property is automatically satisfied as the residue class field is ~ F, and
so it has no non-trivial automorphisms).

Now we are going to give a more precise description of the primes in Q(pm)
above p. Let ¢ be the Euler phi function defined on the natural numbers in
one of the following, equivalent, ways:

(1) ¢(n) is the number of positive integers < n which are relatively prime
to n.

(i) ¢(n) = #(Z/nZ)*.
(i) ¢(n) = [Q(n):Q].

(iv) &(n) is the number of isomorphisms between two cyclic groups of
order n.

For each field F and each ne N let p,(F) be the group of n-th roots
of unity in F; this is in general a cyclic group of order dividing n. As
m|p — 1 the order of w,(F,) is precisely m. The set of primes q in Q(m)
above p and the set of isomorphisms \ from n,,(Q) to H.(F,) have both
d(m) elements. In fact there is a canonical bijection between these two sets:
let q correspond to  iff { = () mod q for all e p,(Q). Among those
isomorphisms y we will now single one out. Let z be a generator of
F*, then y(z) is a generator of L.(Q) and z?~ V'™ is a generator of p,(F,).
Therefore there is a unique isomorphism from p,(Q) to p,(F,) which sends
x(z) to 2P~ Pm_ Tt clearly sends x(x) to x?~ 1™ for all x e F¥. This is the
isomorphism which we single out. Let p be the prime in Q(m) above p
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corresponding to this isomorphism and let B be the prime in Q(pm)
above p, so PP~ = p, if we identify the prime ideal p of Q(m) with its
extension to a fractional ideal of Q(pm). Thus we have the following congruence

(2.1) y(x) = x?P" " mod P forall xeFj .

Let vy be the valuation on Q(pm) corresponding to PB. The number {, — 1
is a uniformizing element of vy in the sense that vp(,—1) = 1. Moreover
one has vp(p) = p — 1. From the prime ¢ we get the other primes in
Q(pm) above p by Galois action: each prime in Q(pm) above p is equal
to P, the image of P under the Galois action of 7, for a unique

1 e Gal (Q(m)/Q).

(2.2) In the same way we get from the prime p all the primes in Q(m)
above p. However, in the last section of this paper, it will be more convenient
to use a slightly different description of the primes in Q(m) above p.
There we will not fix y, as we do in the rest of the paper, but we will
let it run over the ¢(m) multiplicative characters on F, of order m. For each
such y we let p = p(y) be the prime in Q(m) above p associated to x
in the way described above. Then p = p(y) runs over the ¢(m) primes
in Q(m) above p.

3. THE PRIME FACTORIZATION OF THE (GAUSS SUM:
STATEMENT OF THE RESULT

Before we state the outcome of the prime factorization of G we introduce
some more notation. For each ieZ with 0 <i<m and (i,m) =1 we

define the integer k; to be the exponent of the prime BT in the prime
factorization of G in Q(pm) (it turns out that an inverse has to appear
somewhere and this is a convenient place). Equivalently, k; is the exponent
of the prime ‘B in the prime factorization of G™, that is,

(3.1) ki = vp(G™) .

Any given action of a group I' on an algebraic number field F induces
an action of the group I' on I(F), the group of fractional ideals in F.
Now we proceed with 1t just as we did above with the action of I' on
the multiplicative group F*: we denote the action of I' on I(F) by the
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exponential notation, we extend it by Z-linearity to an action of the group
ring ZI" on I(F) and we denote this action also by the exponential notation.
If moreover E is a subfield of F then we can view I(E) as a subgroup of
I(F) by extension of fractional ideals; moreover if a € I(E) with a = b” for
some b e I(F) and some r € N and if A € QI' with rA € ZI', then we make as
usual the convention that the formal expression a* means the fractional ideal
b in F. We define the Stickelberger eclement 6 in the group ring

Q[Gal (Q(m)/Q)] by

I
=T
lm t

1

(3.2) 0=73

where i runs over the positive integers < m which are relatively prime to m.
The formal expression p® denotes the ideal PP~ 18 by the convention made
above for fractional exponents and by the relation p = B~ ! between p
and P.

Now we are ready to formulate the following result of Stickelberger on
the Gauss sum G as defined in (1.1):

(3.3) THEOREM. The prime factorization of the Gauss sum G is p°

(3.3) The statement of the theorem is clearly equivalent to the following
one: only the primes in Q(pm) above p occur in the prime factorization
of G, and their exponents in this factorization are as follows: for each
positive integer i < m which is relatively prime to m, the exponent of the
p—1

m

L.

. -1 .
prime P 1S k; =

4. A USEFUL LEMMA

In the proof of theorem (3.3) we will use a simple general lemma to
determine the exponents in the prime factorization of the Gauss sum G.
The aim of this section is to state and to prove this lemma. Let F be a
field, v a discrete valuation on F, F(v) the residue class field of v and &t a
uniformizing element of v, that is, ® € F* with v(n) = 1. An element u € F*
with v(u) = O will be called a v-unit. We define a homomorphism [ from F* to
Z. x F(v)* by sending each o € F* to the pair (k, r) consisting of the integer
k = v(o) and the residue class r in F(v) of the v-unit o/n*. We call (o)
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the “leading term” of o e F* with respect to the valuation v and the uni-
formizing element m. We define the inertia group I of F at v to be the
group of those automorphisms of the field F which fix the valuation v and
which induce the trivial automorphism on the residue class field F(v).
Now let an element y of I be given. We consider the homomorphism p
from the multiplicative group F* to itself which sends a to o'~ ! for each
o€ F*. From our assumptions on the automorphism y the following facts
follow immediately:

(4.1) The leading term of p(u) is (0, 1) for each v-unit u.

(42) The leading term of p(r) is (0,z) where z is the residue class 1n
F(v) of the v-unit 7"~ *.

The following crucial lemma gives the effect of p on the leading term of
an arbitrary element of F*.

(4.3) LeEmMMA. Let oeF* If l(a) = (k, 1), then I(p(e)) = (0, z5).

Proof. Let o€ F*; write o = n*u with k = v(o) and u a v-unit. Then
p(a) = p(r)p(u). So, as [ is a homomorphism and by (4.1) and (4.2),
we get that the leading term of p(x) is (0,zF) as required. [

(4.4) Discussion. This lemma is intended for the following type of applica-
tion. Suppose we are given a field F, a discrete valuation » on F and
a non-zero element o of F and we are asked to determine the integer v(w).
Then lemma (4.3) suggests the following approach. Find a non-trivial
element y of I, the inertia group of F at v and pick a uniformizing
element n of the valuation ring in F of v. Let m be the maximal ideal of this
valuation ring. Let ey N U {e} be the order of the residue class m¥~!
mod m in the multiplicative group F(v)*. Having done that, determine a
rational integer k such that the following congruence holds

(4.5) = (" Y modm.

It then follows that v(a) = k (mod ep) (if e, = oo we just mean by this that
v(a) = k). The crux of the matter is that it is much easier to determine
v(o) mod e, via the congruence (4.5) than it is to compute v(c) itself by the
following “brute force” method, which is the usual approach: one embeds F
in 1ts completion at v, one expands o there as a power series in ® with
coefficients in a suitable set of representatives of the residue class field F(v),
and one determines the leading term of the resulting expansion. Moreover,
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“sometimes” there is, once one has determined v(o) mod e,, a relatively
easy method to determine moreover v(x) itself. It would take us too far
to give a formal account of this method, so in this matter we will restrict
ourselves to the special case of Gauss sums.

(4.6) For general insight it is of interest to know how e, depends on v.
We will give the answer under the assumptions that the residual characteristic
of v is a prime number, say [, and that y has finite order, say e. For
each ne N we can write n = I'n’ with reNu {0}, e N and [} n';
then we call n' the [-free part of n. Now we give the desired result.

(4.7) The number e, is the I-free part of e.

We omit the proof of this fact, as we will not make use of it: in our
application it will be obvious what e, is, once we have computed the class
of ©'~! in F(v) which is something that we have to do anyway.

5. THE PRIME FACTORIZATION OF THE (GAUSS SUM:
PROOF OF THE RESULT

Now we are ready to prove theorem (3.3). We will do this by proving
the statements in (3.4).

Proof of (3.4). By proposition (1.2) (i), (ii1) and (iv) only primes of
Q(pm) above p can occur in the prime factorization of G. Let i€ Z with
0 < i< mand (i, m) = 1. We have to determine the integer k; defined by (3.1).
We are first going to determine k; modulo p — 1 by using lemma (4.3).
We apply this lemma to F = Q(pm), v = v, &« = G, n = {, — 1 and
Y = o, where geZ with 0 < g < p is such that g(mod p) generates
(Z/pZ)* = F}; then k = k; and the residue class field F(v) it F,. This choice
satisfies the requirements of the lemma as o, lies in Gal(Q(p)/Q) which is the
inertia group of P in the extension Q(pm)/Q. Now let us calculate the left and
right hand side of the equality /(p(a)) = (0, z¥) which holds by lemma (4.3).
On the one hand p(a) = G%%~Y which is by proposition (1.2) (ii) equal to

X&)% = (g’ where g=gmodp
p—1
and this is by (2.1) congruent to g m ' mod B . Therefore

p—1

I(p(w) = (0,2 = ).
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On the other hand,
g-1
2= -Doml= ) G,
=0

which is congruent to g mod B and so (0, z¥) = (0, g%). Therefore the
equality /(p(a)) = (0, z¥) amounts here to the following congruence

p—1

g =gl modp

that is, by the choice of g,

k, = i modp —1.

Thus k; has been determined modulo p — 1. In fact one may replace in (5.4)
the congruence sign by the equality sign as on the one hand clearly
p—1

m
one has 0 < k; < vgp(p) = p — 1. Therefore one gets

0 < i < p — 1 and on the other hand by proposition (1.2) (iii) and (1v)

This finishes the proof of the theorem.

6. ANNIHILATORS OF THE IDEAL CLASS GROUP
OF A CYCLOTOMIC FIELD

In this section we give an account of the annihilation of the ideal
class group of a cyclotomic field by the Stickelberger ideal. For each
commutative ring R with unit element, each R-module M and each A € R,
one says that A annihilates M or that A is an annihilator of M if Ar = 0
for all » € M ; the set AnngM of all annihilators of an R-module M clearly
forms an ideal in the ring R.

Let m > 1. The structure of Clg,,, the ideal class group of the cyclotomic
field Q(m), and the action of the Galois group I' = Gal(Q(m)/Q) on it,
are of great interest. Information on this structure is contained in AnngCly,, -
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It is difficult to analyse this ideal directly. However, what one can do is to

relate this i1deal to the annihilator of another ZI'-module, namely p,(Q).

Let I = Anngrp,(Q), J = AnngrCly,, and let 0 € QI' be the Stickelberger
element defined in (3.2). The main aim of this section is to derive from the
prime factorization of the Gauss sums as given by theorem (3.3) the fact that
multiplication in QI' by 6 sends 7 into J, that is 6/ € J. The ideal 67 in ZI
is called the Stickelberger ideal. This result shows that a part of J can be
obtained from /. Now [ is the annihilator of a module with a rather transparent
structure and so it can easily be determined completely in a direct way. Thus
one achieves, all in all, the desired objective: one gets information on the
ZI'-module Clg(, . This section consists of two parts, which can be read
independently, the determination of 7 and the proof of the inclusion 6/ C J.

We start by determining the ideal I = Anng,(Q). For each x € (Z/mZ)*
we write <x> for the smallest non-negative representative of x in Z. We
define the set of elements {B,} in ZI" where x runs over (Z/mZ)* by

(6.1) B, =1 if x =1

=0, — <x> otherwise .

This set is clearly a Z-basis of ZI', that is, every element A e ZI' can be
written uniquely as

(6.2) A=Y aB,

where x runs over (Z/mZ)* and with a, € Z for all x € (Z/mZ)*.

(6.3) PROPOSITION. Let AeZI'; write A as in (6.2). The following
conditions on A are equivalent :

(i) A annihilates p,(Q).
(i) a; = Omod m.
(i) A0 eZI'.
Proof. (i) < (i). Let { be a generator of the group w,(Q). For each
x € (Z/mZ)* one has clearly
(P = [ if x =1
=1 otherwise .

Therefore {* = (**. As { has order m, it follows that (i) and (i) are
equivalent.
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(ii) < (ii)). We are going to compute the product in QI" of B, and 0
for all x € (Z/mZ)*, in order to verify the following facts

(6.4) B0 = 0 if x = 1

e ZI' otherwise .

Proof of (6.4). Let xe(Z/mZ)*; if x = 1 the statement in (6.4) is
obvious, so assume x # 1.

<i>
-1
Bxe = (Gx_‘<x>)zi G
m
where i runs over (Z/mZ)*. This is
<i> <x> <i>  _
Z- Ox—l‘i - z G ! >
Eom b m
replacing in the first sum i by ix we get
<ix> _y <x> <i> B <ix> — <i> <x> _,
Zi Gi o zi O-i - zi 0ni >
m m m

in particular B0 € ZI'. This finishes the verification of (6.4)  [.

It follows from (6.4), using moreover (6.2) and the definition (3.2) of 6
that for each ie(Z/mZ)* the coefficient of o; in A0 is a rational number

a; <i>
We

which has the same class in the quotient group Q/Z as

conclude that A0 € ZI' iff a; = 0 mod m, that is, (1) is equivalent to (ii1).
This finishes the proof of proposition (6.3). []

Having thus determined Annyp,(Q) we now come to the main aim of
this section, which is to relate the annihilator ideal I of the ZI'-module
i, (Q) to the annihilator ideal J of the ZI'-module Cloum - This relation
is given by the following result, to be derived from theorem (3.3) and
proposition (1.2) (i), (ii); we will not need proposition (6.3) for the proof.

(6.5) THEOREM. 6l < J.

However there will be a problem. We will see that theorem (3.3) only
implies the following result (6.6). Let the absolute degree of a prime ideal

in an algebraic number field be the degree of its residue class field over
its prime field.
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(6.6) Let AeZI'. If A is an annihilator of p,(Q) then A8 is an annihilator
of the subgroup of Cly,, generated by the classes of the primes in Q(m)
of absolute degree one.

In order to get the full result (6.5) one can proceed in either one of the
following two ways.

(i) One can extend theorem (3.3) and proposition (1.2) (i) to Gauss
sums associated to arbitrary finite fields. Then the extended results imply
the desired theorem. However, the easy method of obtaining the prime
factorization of Gauss sums which is given in this paper does not seem to
extend to the case of arbitrary finite fields. Therefore we would fall back
on the usual proof of this prime factorization, which, though it is elementary,
requires rather delicate arguments.

(i) One can instead allow oneself to use the following fact:

(6.7) The subgroup of Cly,, generated by the primes in Q(m) of absolute
degree one is the whole of Cly,,

This follows immediately from the following standard density results. Let F
be an algebraic number field, then

(a) The set of primes in F of absolute degree > 1 has zero Dirichlet
density.

(b) The primes in F are distributed over the elements of Cl, the ideal
class group of F, with equal Dirichlet density.

We choose the second alternative. Now we are ready to prove theorem (6.5).

Proof of Theorem (6.5). Let A be an innihilator of the ZI'-module
i, (Q). By proposition (1.2)(ii) the number G* in Q(pm)* is fixed by
Gal (Q(pm)/Q(m)) and so, by Galois theory, G*e Q(m)*. By theorem (3.3)
we get the following result

(6.8) The fractional ideal p*® in Q(m) is principal.

Namely it has generator G

Recall that the primes in Q(m) of absolute degree one are precisely
the primes which lie over prime numbers which are =1 mod m and
recall the description of such primes given in (2.2). Now we can, while
keeping m fixed, vary (p,y) over all pairs consisting of a prime number
p = 1 mod m and a multiplicative character y on F, of order m. Then p
runs over all primes in Q(m) of absolute degree one. Therefore (6.8) amounts
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to the fact that A0 kills the class in Clg,, of each prime in Q(m) of
absolute degree one. Therefore we have proved (6.6) and so, by (6.7), the
statement of theorem (6.5) follows. [
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