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III. Mordell's conjecture

Suppose L is a field of characteristic zero of finite type over a relatively

algebraically closed subfield K.

Theorem 3.1 (Manin). Suppose C is a curve of genus at least 2

defined over K. Suppose C(L) is infinite, then there exists a curve C0

defined over K such that C0xKL C and C(K) minus the image of
Cq{K) under this isomorphism is finite.

We can translate this into

Theorem 3.1 (bis). Suppose S is a variety defined over K and

suppose C S is a smooth proper curve of genus at least 2 over S.

Suppose C(S) is infinite, then there exists a curve C0 defined over K
such that C0 x KS C and C(S) minus the image of C0(K) under this

isomorphism is finite.

Remarks. First, it is possible to reduce this by standard arguments to the

case in which S is a smooth affine curve over K and so we will suppose this

to be the case. Second, if we can prove that C0 x KX C for some C0

defined over K, (i.e. that C is a constant family) then this is de Franchis'

theorem which is proven in Lang's Fundamentals of Diophantine Geometry.
Hence to prove this theorem all we have to do is show that if C(S) is infinite
then C is a constant family of curves.

1. Sets of bounded height

In this section we will either recall or derive the properties of heights needed

in the sequel.

Let f:X~+S be a smooth projective morphism of varieties over K a field
of characteristic zero. Corresponding to a projective embedding of X over S,

there exists a function h:X(S)~* R called a logarithmic height. (For a

reference, see ([L-FD] Chapter 3, §3). If the logarithmic height of a subset of
X(S) is bounded with respect to one projective embedding, it is bounded with
respect to all (See [L] Prop. 1.7, Chapt. 4). We will call such a set a set of
bounded height and a set of points which is not of bounded height, a set of
unbounded height. We will need several properties of such sets. If g: X' -> X
is a morphism of projective schemes over S which is finite onto its image, then
the inverse image of a set of bounded height in X(5) is a set of bounded height
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in Suppose X is an Abelian scheme over S and R is the subgroup of
A(S) consisting of constant sections of X/S. Let s e X(S). Then the set s + R

is a set of bounded height.

Lemma 3.1.1 (Manin). Suppose E is a finite dimensional K vector
subspace of K(C). Then the set

T {s e C(S): 3k 0 e E such that s*k 0}

has bounded height.

Proof. Without loss of generality we may increase E to suppose that the

rational map g: C ¥k(E) given on points by x (eeE^ e(xj) is birational
onto its image (note : g is actually a morphism on the compliment of the polar
locus of E). It follows that g induces an embedding of the generic fiber of C/S
into Pk(S)(E ®K(S)). Let h denote the logarithmic height with respect to this

embedding. It follows that if s e C(S),gos is constant or g os has degree

one. In the former case h(s) is zero and the degree of the Zariski closure of
gos(S) in PCE) in the latter.

Now if 5 e T, and g os is not constant, it follows that the Zariski closure

of g°s(S) is a component of a hyperplane section of the Zariski closure of
g(C). Hence, h(s) is less than or equal to the degree of the Zariski closure of
g(C). This proves the lemma.

The key property about heights we will need is:

Theorem 3.1.2. Suppose C-> S is as in the above theorem. If C{S)
contains an infinite set of bounded height then C is a constant family.

(See Corollary 2.2, Chapter 8 of [L-FD].)
Hence all we need prove is that the elements of C(S) have bounded height.

2. Lang-Siegel towers

Suppose the genus of Cis at least 1. Suppose Tis an infinite subset of C(S).

Proposition 3.2.1. There exists a projective system of curves

({Cn}fhm>n}),m,n e Z>0 and n ^ m, over K such that

(i) Q C,

(ii) hm>n: Cm - Cn is étale,
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(iii) (hm>i) T)n Cm(S) is infinite,

(iv) There exists a finite covering Sm> n of S such that the fiber product
of hm>n with Sm>n is Galois, Abelian and of positive degree.

Let / denote the Jacobian scheme of C over S. Let a: C -> / be an Albanese

morphism. Let p be a prime. Let T denote the closure of a(T) in J(S) (x) Zp.
Since a(T) is infinite it follow from the Mordell-Weil Theorem that there exists

a t e T - a(T). Let tn e T such that t - a(tn) e pnJ{S). Let Cn denote the

normalization of the fiber-product of C and / via the map Hn:x pnx -f tn

and hn> 2 the natural map from Cn to C. It follows that Cn is defined over S

and since Hm(J(S)) D {tn:m\n} that hntl(Cm(S)) contains an infinite subset

of T.

All that remains is to exhibit the maps hm>n. Clearly, tm — tn — pnrm>n for
some rm>n e J(S). Let Hm>n denote the map x:pm~nx + rm>n. Then Hm,k

Hn koHm n. It follows that Hm>n pulls back to a morphism hm>n: Cm-^ Cn.

It is easy to see that this morphism becomes Abelian after adjoining the
pm~"-torsion points on /. This proves the proposition.

Remark. One can also prove the above proposition with the condition
n ^ m replaced by n | m.

3. Corollaries of the Theorem of the Kernel

Lemma 3.3.1. Suppose g:Xr -* X is a morphism of smooth proper
schemes with geometrically connected fibers over S. Then if\ie PF(X7S)
and s,t e X($$,(g*u)(s9t)

Proof. This follows easily from Lemma 1.3.2.
Suppose / is the Jacobian of C over S and g is an Albanese morphism,

then since g*:HlDR(J/S)- HlDR(C/S)isan isomorphism g*:PF(J/S)
PF(C/S) is an isomorphism.

Lemma 3.3.2. Let p be a fixed Picard-Fuchs differential equation on
C/S. Then {p {s, t) : s, t e C(S)} lies in a finite dimensional subspace of
K[S] over K.

Proof. Suppose p e PF(J/S) such that g*p p. The lemma follows
from the Mordell-Weil theorem which together with the Theorem of the kernel
implies that J(S) modulo the kernel of the homomorphism s p^s1) is a
finitely generated Abelian group.
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Lemma 3.3.3. Suppose A is an Abelian scheme over S such that
[WA/s] H1dr(A/S) and g:C~> A is a non-constant morphism over S.

Fix s e COS). Then the set T {t e C(S):(g*\i)(s,t) 0 for all
jLi e PF(A/S)} is of bounded height.

Proof. Let A' denote the smallest Abelian subscheme of A over S

containing g(C). Since the map g*:PF(A/S) -> PF(A 'iS) is surjective and

[WA/si H'dr{A/S\ it follows from Proposition 2.1.2 that g(T) is contained
in a translation of the group of constant sections of A 7S. Hence, g(T) is a

set of bounded heigt. Finally, since C g(C) is a finite morphism, it follows
that T is a set of bounded height.

In particular,

Corollary 3.3.4. Suppose A is an Abelian scheme over S suchthat
kA/s is an isomorphism and g:C~+A is a non-constant morphism over
S. Fix s g COS). Then the set {te C(S) : (g*Pco)te 0 0 for all
co g 00,4/5} is of bounded height.

4. Proof of Mordell's conjecture

Proposition 3.4.1. Suppose the kernel of the kc/5 has rank at
least 2 over if[5], then the points of C(S) have bounded height.

Proof. Suppose COS) contains points of arbitrarily large height. Fix
x g COS). By shrinking Sif necessary, we may suppose that there exists a function

z e if[S] such that Q5 K[S]dz and there exists a finite covering Sf of
C by affine opens U and functions Vy e J^C(U) such that se U(S), and

£^(£7) is spanned by dz and dvv. We may also suppose that s*Uy 0 by

replacing uv with vv - (sof)*vv if necessary. For U e Sf,u e ~F?C(U) we

define du>zu and 6u>vu by the equation

du dUtZudz + dUiVudvy

Then dUyZ is a lifting of 6 : 9/dz. We set piï) t) for

p G PF : PF(C/S)

and t g C(S).
Let coi and co2 be two independent elements in the kernel of kc/iS. It

follows that there exist coj and cc>2 e coC/s such that

8[©;] [co/]
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Hence \it « 9 (x) cö/ - 1 (g) ©; is in PF. For U e if let and be

elements of ^C{U) such that

6c/jZcû/ - a - dC/swu,i

s*wUj and co, UujdC/$Vu on U. Let T denote the set of t e C(S) such that

t n U ^ 0 and t*üu ± 0 for all £/ in 5£. This is the complement of a finite
subset. For t e T

(4.1) fi/(0 « t*(wpmd + t*(uu>i)dt*(uu)

for all U e by Corollary 2.2.4.

Foi te ZU e if let

hu,t => "17,2^1(0 - "l/,lM-2(0 - ("C/, 2 1 ~ UUtiWUf2) •

We deduce from (4.1) that t*hu>t 0. On the other hand, by Lemma 3.3.2,
the set of functions hu>t lies in a subspace of JPC{U) of finite dimension over
K. It follows from Lemma 3.1.1 that hu>t 0 for all t in in a subset T' of
T of unbounded height. Fix t0 e T\ and set cy : p/(^0), then it follows that

Uu.liVi(t)-Ci) - My,! (|I2(0 -Ci)
for all t e T'. Now since coj and co2 are independent over K[S], uUA and uv>2

are independent over K(S) and so we must have

4/(0 ^
for all t e T'. Let Zuj w^/(Q— Wuj)- Let Zuj uüj(c'~ wuj)- Let T"
denote the subset of T such that t*uUjX F 0 and t*uUi2 ^ 0 for all U e jf.
This is the complement of a finite subset of T. For t e T'

(4.2) FZuj dt*uö

for all Uejé. This implies that Zuj Zu,i since T" is infinite. Set

Zu — Zu, i «

Set Uu uv, \ and wv wUt i. On U n V,

di)y gu, ydz + fu, vdüu

for some gUt y e J?C(U) and fu,y c J^c(U n F)*. It follows that

Uu=fu,vUVi §u,vgu, v §v,zfu, v and f •

Hence

Zu — fU, vZv — gu, V
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Hence, we may define a divisor Y which on U is the polar divisor of
Zu- (It is clear that the support of Y is contained in the intersection of
the supports of the divisors of coi and co2.) Let C C - Y, U' U n C' for
U e 5f,Uu* Uu\u' etc. Then the above implies that we may define a lifting
6 of 8 to T{2$erC'/K) such that on U\

àvw Zw •

If Y 0, this implies that kC/s is zero and hence that C/S is isoconstant.
This contradicts de Franchis' theorem. Thus Y 0.

It follows from (4.2) that t n Y 0 for all t e T". In particular, Y has

no vertical components. But this contradicts the function field analogue of
Siegel's theorem [L-IP] since T" is a set of unbounded height. This completes
the proof of the proposition.

Remark. In the appendix we will present Manin's original proof of this

proposition which uses Theorem 2.1.0 and does not use Siegel's theorem. To
this end, we point out that it follows from (4.2) that

(4.3) t*dx d(t*x)

for all x e K[C'] and te T".

We will now complete the proof of the function field Mordell conjecture.
The argument here is essentially the same as that in Manin's paper except that
we found it necessary to be more careful about the choice of base points.
Suppose C/S is a curve over S such that C(S) contains points of arbitrarily
large height. Let ({C„},{hmi„}) be the projective system as described in §3.2
such that Ci C and Cn(S) contains points of arbitrarily large height. From
the previous proposition, we know that the rank of the kernel of the kCn/s is

at most one. Since these ranks grow with n, by replacing C with Cn for
appropriate n, we may suppose these ranks are all equal. Set hm hmA

By shrinking S, we may suppose that there exists a z e K[S] such that dz

spans Qij over £[S]. Let 8 d/dz.
Let Jn denote the Jacobian of Cn and An Jn/h*J{. It follows that KAn/s

is an isomorphism. We identify coAn/S with its image via an Albanese

pullback in coCn/s- Recall that in these circumstances we have a Picard-Fuchs

equation |iœ : (i9,co attached to co e coAn/S.

Fix an s e COS). By shrinking S if necessary, we may suppose there is an

affine open U of C such that se U(S) and there exists an element u of
^c(C) such that is spanned by dC/sV over ^c(C) and, s*u 0.

Recall, for u e we defined 8zu and 8vu by
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du 8Zudz + 8Vudv

Now suppose n ^ 1 and Sr is an étale (not necessarily finite) connected

open of S such that C'n(S') contains a point r lying overs s. Let C'n Cn x S'
and A'n An x S'. We will abuse notation for the moment and let z and v

denote their pullbacks to S' and C'n respectively. Let h'n: C'n -* C\ denote the

pullback of hn. Let U' denote the inverse image of U in C{. We set

Un h'n~l{U'). Then since h'n is unramified, dz and dv span £llc,(Un). In

these circumstances we have a iGlinear map Lz>v>r: co^/s' K(Cn)A described

in Corollaries 2.2.4 and 2.2.5.

Let n, S', r be such that the dimension of the K(Cn)-span of the image of
LZjV>r is maximal over all such triples. Call that dimension R. Now fix m > n

and replace S with an étale open of S' such that, Cm is Galois over Cn with
Galois group G and there exists an r' e Cm(S) above r. Let
w h*v,h - hm>n and let Y Cn and X Cm. Our hypotheses imply, in
particular, that 2f(S) is of unbounded height. Let B Jm/h*Jn. Then, kb/s
is an isomorphism. The module, <tiB/s injects naturally into coX/s and we

identify it with its image.

Let r|!, be a K(S)~basis for coB/s. Let L LZih*w>r. As Loh*
LZjW>r our maximality hypothesis implies that L(h*coAn/s) c L(fàA*/S)K(X)

and so there exist elements coj, co* e coAn/S and elements Z\j e K(X) such
that

Z z)Let

T {t e X(S): t n Um ^ 0, t*w 0}

The complement of T in X(S) is finite. In particular, in the notation of
Corollary 2.2.5, since VZth*w(t) - Vz,w(h(t))9t e T and L(h*co) Lz>w>r(co)

for co e coa„/s> by Corollary 2.2.5

E E Ä(0) •

for t e T. Let

fi.tHn,( r'>0- E A(0) •

We see that t= 0 and Lemma 3.3.2 implies that the set

{/;,<: 0 < i^ k

is contained in a finite dimensional K subspace of K(X). Hence by
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Lemma 3.1.1, using the fact that height is stable under the action of G, the
subset Ti of T consisting of elements t for which there exists a o e G and an
i, 0^/^/7, such that fi>ta ^ 0 is of bounded height.

Let T2 T - T\. Clearly, T2 is stable under G. Moreover, fi>t 0 for all
t e T2. That is,

,('•'•') E Zij\
In particular, m(.(r', ta) m;.(r', t) for t e T2 and o e G. On the other hand,

!i^(r\t°) \i^(r\r'°) + ^.(r'V0) + m;ö(r',/)

by (II, 1.1) and Lemma 3.3.1. It follows that

hco-coa^V) Pco (r\r'°)
for all co e coB/s, o e Gal(^/7) and t eT2. Let t0 e T2. By (II, 1.1) we
conclude that |aCÙ_Cûo(zto, 0 0 for all co e co5/5, o e Gal(X/Y) and t e T2.

But {co - coG:co e co5/5, o e Gal(X/Y)} spans coB/s over K by the definition
of B. Corollary 3.3.4, applied to the morphism X B, implies T2 is a set of
bounded height. But this implies that X(S) is a set of points of bounded height.
This contradiction completes the proof of Mordell's conjecture for function
fields.

Appendix: Chai's proof of the Theorem of the Kernel

In this appendix, we give Chai's proof of Manin's Theorem of the Kernel,
Theorem 2.1.0 above and explain how Manin used it to prove the function
field Mordell conjecture. Let notation be as in Section II. As explained in that
Section, the theorem follows from the assertion:

(Al) N(e,s) 0 iff woA^(e,5) 0.

Let H HlDR(A/S). For a subconnection D of H, let D denote the

pullback of Hxdr{A/S,Z) to D. As (Al) is stable under fiber products and

isogenics (see Proposition 1.3.2), (Al) is a consequence of the following
theorem, taking D [W].

Proposition Al.l. (Chai). Suppose A/S is irreducible and not
isotrivial. Let D be a non-trivial subconnection of H. Then the

extension H of H of connections splits iff the extension D of D does.
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