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AAIPA

FiGure 1

There are two equivalence relations with which we may be interested:
Let R, be the equivalence relation on the set of links generated by:

L.R,L".,L_R,L" = LyR,Lj
6) if (L,,L_,Ly) and (L'y,L",Ly) § L+RyL"y, LoR, Ly = L_R,L"
are skein triples then L_R,L'_,L,R,L, = L,R,L", .

I shall call this equivalence relation broad oriented skein equivalence. The
other relation on the set of oriented links, narrow oriented skein equivalence,
is the equivalence relation R, generated by:

o if (L,,L_,L,) and (L',,L"_,L%) { L,R,L.,L,R,Ly= L_R,L"

are skein triples then L_RL",L,R,Ly=L,RL","

It is obvious that R, is a weaker equivalence relation than R, (ie. the
equivalence classes are larger), but it is not clear (and I do not know)
whether it is strictly weaker. By the broad or narrow oriented skein of links
I refer to the set of equivalence classes of oriented links under the relation
R, or R, (Note that in most of the literature, R, is referred to as
“skein equivalence”; R, is not referred to at all). The polynomial invariant
P (I, m) of [15], [3] etc. may be regarded as the most general linear broad
skein invariant (see [15], [16]). The fact that the value of P (I, m) specified
on the unknot U is sufficient to define its value on any link may be
taken as saying that the broad oriented skein is generated by U. The
corresponding statement for the narrow oriented skein is that specifying the
values of P,(l, m) on all unlinks is sufficient to define its values on all
links — the set of unlinks generates the narrow oriented skein.

1.2. SIGNATURE AND ORIENTED SKEINS

I now show that the signature function o,(§) of any link with non-zero
Alexander polynomial is a broad oriented skein invariant (It is already

known that the signature o = 5 o,(—1) is a narrow skein oriented invariant
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for knots — which are, of course a proper subset of the set of links with
non-zero Alexander polynomial — see e.g. [15]). Before proceeding with this,
however, I introduce some convenient notation. Given links L and L', set

oo if L#L

®) " po<L,L')-—-{O Lo

Now for n > 0 set

min (1+max{pn(LlaL1)s pn(LZ’Lz)}) ’
skein triples
(L, Ly, L)
(L', L1,L3)

min (1 +max{p,(Li,L]), pr(L2, L})}),
skein triples
_ (Lo Lo Ly)
9 pu1(L, L") =min (Li,L",L))

min (1+max{pn(L19L1)’ pn(L2,L2)}) ’
skein triples
(Ly,La,L)
(L1,L3,L)

min  (p,(L, L")+ p.(L",L")) .

Links L"’

Finally, define

(10) p(L, L) = lim p,(L, L))

to be the broad skein distance from L to L'. It is easy to see that p
is a metric on the set of links, and that p(L, L') < co if and only if L
and L' are broadly skein equivalent. Intuitively, p measures the number
of skein triples in a minimal chain of simple skein equivalences needed to
establish skein equivalence. It is useful because it provides a grip on broad
skein equivalence for use in inductive proofs.

By modifying equation (9) (i.e. by removing the third line inside the outer
minimum) a similar metric can easily be defined for narrow skein equivalence,
but I shall not need it here.

Note that since skein-equivalent links have the same P,(l, m) and hence
A,(t) and determinant, it makes sense to speak of the determinant of a skein
equivalence class.

THEOREM 1. The signature is well-defined on broad oriented skein equi-
valence classes with non-zero determinant.
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Proof. The proof proceeds by induction on the broad oriented skein
distance p between two links. If p(L, L) = 0 then L = L and trivially
o(L) = o(L’). For the inductive hypothesis suppose that p(L, L) < n implies
that o(L) = o(L') whenever det(L) = det(L’) # 0. I will prove that this is
enough to show that the same is true whenever p(L, L) = n and
det(L) = det(L) # 0. This will suffice to prove the theorem.

Now if p(L, L') = n then from the construction of p we can see that
p L, L) = n and p,_;(L, L) = co. One of the following cases must occur,
corresponding to the four lines in the outer minimum of equation 9:

1) There exist skein triplets (L, L,, L,) and (L', L', L5) such that p(L,, L)
<n— landp(L,,L,) <n — 1.Theno(L,) = o(L})and o(L,) = o(L?),
provided det(L;) # 0 and det(L,) # O respectively. Let L, Ly, L, be
given Seifert surfaces M, , M_, M, which are identical away from the
crossing at which the links differ and near it are as shown in Figure 2.

M,

FIGURE 2

Choose a set of generators for H,(M,; Z) and extend to sets of generators
for the first homologies of M, and M _ by including loops which intersect
the additional crossing once in the link projection as shown, and which
are identical away from this crossing. Then using these to obtain Seifert
matrices V., V_, V, for the three links, we find that V', + V', V_ + V",
Vo + Vi are of the form

2r p 2r+2 p
11
( ) (p/ S0> ’ ( p/ SO) bl (SO) .

Now if det(L,) # 0, transformations of the form Q — PQP’ (P nonsingular
and with rational entries) suffice to put these matrices in the form

m 0 -1 0
(12) (0 SO>,<'”O SO>,(SO),
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where det (Sy) # 0. Then

olly =o(V,.+V'))
= o(Sy) + sgn (m)

using the inductive hypothesis for the equality of the third and fourth lines.
If, however, det(L,) = 0, then det(L) # 0 = det(L,) # O and the three
matrices can be put in the form

A 0

0 0)°

with det(A) # 0 and € = + 1, whence it is easy to check that

m 0 ¢ m—1 0
(14) 0 A 0}, 0 A
e 0 O g 0

S O M

(15) o(L) = o(4) = o(L;) = o(L}) = o(L).

2) There exist skein triplets (L,, L, L,) and (L', L', L%) such that p(L,, L))
<n—landp(L,,L,) <n— 1.Theno(L,) = o(L’)and o(L,) = o(L%).
We may prove by precisely the same arguments as in Case 1) that
o(L) = o(L).

3) There exist skein triplets (L, L,, L) and (L', L', L) such that p(L,, L")
<n-—landp(L,,L%) <n— 1.Theno(L,) = o(L})and o(L,) = o(L)),
provided det (L) # 0 and det(L,) # O respectively. In this case L = L,
in the skein triplet under construction. As above, we may choose Seifert
matrices V,,V_,V, for L;,L,, L such that (after transformations of
the form Q — PQP’, P non-singular and with rational entries)
Ve + Vi, V_+V_,V,+ V, take the forms

m 0 m—1 0
1o (0 5) (" 5) o0

where det(S,) # 0. Then at least one of L,, L, has non-zero determinant.
Without loss of generality, suppose det (L) # 0. Then ‘
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o(L) = o(So)
= o(L,) — sgn(m)
det (L,)
(17) = o(L;) — sgn (i et (L)>
det (L")
= o(L}) — sgn (—l—th—(L,)>
= o(L)

using the inductive hypothesis to establish the equality of the third and
fourth lines.

4) There exists a link L” such that p(L, L") < n and p(L", L') < n. Then

This concludes the proof of Theorem (1). Note the use made of the fact
that it is not possible for exactly one member of a skein triplet to have
non-zero determinant. Note also that although the transformations Q — PQP’
(P nonsingular with rational entries) may alter the determinant, they do not
change its sign, which is all that the proof requires. [

Unfortunately it is not clear how to deal with the cases in which
det (L) = 0, because it is conceivable that one or more of the skein triplets
in the chain establishing skein equivalence of two links could have all
three determinants equal to zero, in which case the methods of the above
proof would not be applicable. It becomes clearer what is going on and
that these exceptions are not just artifacts of a poor proof when the more
general situation of the signature function o,: S' — Z is considered.

Now since the Alexander polynomial A/(t) can be obtained from P,(l, m)
it is clearly a broad oriented skein invariant and it makes sense to state

THEOREM 2. Broadly skein-equivalent oriented links have the same signature
Junction o (@) for all ® other than roots of the Alexander polynomial.

Proof. The proof of Theorem 4 goes through virtually unmodified
(Ar(w) takes the place of the determinant, and the obvious changes are
made to accommodate the fact that we are dealing with Hermitian matrices
instead of symmetric ones). [
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Now if we adopt the usual convention (see [5]) that the value of
o (®) at a root of the Alexander polynomial is defined to be the mean
of its two “adjacent” values

(18) lim o (we®) and lim o (we”),

e—>0+ e—>0—
the fact that both of these values are well-defined broad oriented skein
invariants completes the proof that

COROLLARY 3. The signature function o.:S' — Z is a broad oriented
skein invariant for all links with non-zero Alexander polynomials. [

This is an intriguing result, especially in view of the fact that o (®)
is known to be a concordance invariant. It is natural to ask what relations
there may be between skein theory and concordance theory. Another obvious
question 1s that of what happens when the Alexander polynomial A, is
identically zero. In these circumstances the first Alexander ideal of the link
collapses and the signature function can be thought of as extracting
information about higher Alexander ideals. Kanenobu ([8] and [9]) has shown
that there exist infinitely many links with identical P-polynomials but distinct
second Alexander ideals, so there is no obvious reason to suppose that
this information should be skein invariant. However, I know of no counter-
examples to the conjecture that o,(®w) 1s a broad oriented skein invariant
for all links.

2. (GOERITZ MATRICES AND THE F-POLYNOMIAL

In this section I explore the relationships between the graph of a link,
its Goeritz matrix and Kauffman’s polynomial invariant F,(a, z). In particular
I show that the F(a, z), is essentially calculable from the Goeritz matrix
of a knot. This result makes use of facts about planar graphs discovered
by Whitney over 50 years ago.

2.1. THE GOERITZ MATRIX AND GRAPH OF A LINK

Kauffman [10] has defined a polynomial invariant F,(a, z) of oriented
links as follows:

Recall the definition of the three -Reidemeister moves, see Figure 3.
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