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/D

o = &)+ “~ > — 1. Hence, as ¢ cannot satisfy (4.4), we must have ¢ > 1,
a

so I is reduced.

b+1/D

LEMMA 4. If I = d[a, ] is an ideal of Op with 0<a

D
< 7 then I is reduced.

Proof. We can write I = da[l, ] with — 1< &) < 0. Then we have

- D
O =0+ [ > 1 so that 7 is reduced.
a

5. LAGRANGE’S REDUCTION PROCEDURE

In this section we describe Lagrange’s reduction procedure which was first
introduced in [2]. This procedure uses Lagrange neighbours and so is based
.on the continued fraction algorithm. The procedure, when applied to a given
primitive ideal I of Op, gives all the reduced ideals of Op which are
equivalent to I.

Let {a, b} be a representation of the primitive ideal I of Op. The
Lagrange neighbour of {a, b}is the representation {a’, b’} of the primitive ideal
I' of Op given as follows:

’ b+1/D 1
5.1) ¢ 2 ¢
' D—b2 D—p2
b"= —b+ 2aq, a = = + bg — aqg? ,
\ 4q 4q

(see (2.10) and (2.11)). We write {a, b} 3 {a’,b’}. The primitive ideal
I" = a’'[1, '] is also called the Lagrange neighbour of I.
We note that

1
O =—>1[01>1,
¢ —q ¢

as ¢ = [¢p]. We also remark that if a is kept fixed and ¢ is changed modulo 1
then ¢’, " and @’ do not change. Hence the Lagrange neighbour of {a, b}

depends only upon the sign of a. If {a, b} 5 {a’, b’} then by Corollary 1 the
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ideals 7 =a[l,¢] and I' = a'[l,d’] are equivalent and I’ = p/ with

a -1
p=—0¢" =—.
a ¢

PropPoOSITION 5. If {a, b}g{a’, b'}y, where a>0 and the ideal
I = a[l,¢] is reduced, then the number &  is reduced and the ideal
I' = a'[l1, ®'] is reduced.

Proof. As a > 0 and the ideal I is reduced, we may assume that ¢ is

- 1
reduced, so that — 1 < ¢’ = a)—— < 0, where g = [¢], showing that ¢’ is
—4q

reduced. The ideal 7’ is reduced as ¢’ is reduced.

Remark. If {a, b} 5 {a’,b’}, where a < 0 and the ideal 7 = qa[l, ¢] is

reduced, it may happen that the Lagrange neighbour I’ = a'[1, ¢'] of I is
not reduced. For example the ideal 7 = [3, 7+1/§§] of O;y5 is reduced and
{— 3,14} 5 {13,22}, but the Lagrange neighbour I’ = [13,11+]/82] of I is
not reduced.

The next proposition gives information about the ideals having a specified
Lagrange neighbour.

PROPOSITION 6. (i) If {ai, b} 5 {a’, b’} and {a,, by} 5 {a’, b’} then
the primitive ideals a,[1, d,1, ax[1, ;] are equal.

(ii) If a'[l,9"] is a primitive ideal with a" >0 and &' reduced,
then there exists a unique reduced primitive ideal al[l,®] such that
{a, b} 5 {a’,b'}.

1
Proof. (i) Let g¢; = [¢] and g, = [¢p,]. Then we have ¢; = g; + E and

I by + /D by + /D

¢, = ¢ + —, so that ——— = (g1 —q») + ———, showing that a, = @,
q), 2al 202

and ¢; = ¢, (mod 1). Hence we have a;[1, ¢] = ay[1, ¢,].
(i) As ¢” is reduced we have ¢ > 1 and — 1 < &) < 0. Hence there is a

1 -1 1
unique integer g(>=1) such that — 1 —E)—' <qg< ?.Set(b = q+& > 1.1tis

b+ D - 1
VD , where a, b € Z. Then ¢ = g + g satisfies

2a
- 1< q_) < 0. Thus ¢ is reduced and the ideal a[l, ¢] is both primitive and

easy to check that ¢ =
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reduced. Clearly {a, b} —é*{a', b’} and the uniqueness of the ideal a[l, ¢]
follows from (i).

Now that we have the notion of Lagrange neighbour and its basic
properties, we can define the Lagrange reduction process, which transforms
a given primitive ideal into a reduced ideal.

Definition 11. (Lagrange reduction process) We start a representation
{ag, by} with ay > 0 of a primitive ideal I of Op, and define the sequence of
representations {a,, b,} of the primitive ideals I, by

(5.2) (@, Bu} 2 {@us1s bps1} (1=0,1,2,..) .

In the Lagrange reduction process the integers g, and the quantities ¢, are
given by

b, + /D

5.3 n = n b n =

(5.3) qn = [$n] 0 2,

so that

(5.4) I, = a,[1, ¢,] = [a,,,bn—zl{—ﬁ-] .

By Corollary 1, we have

i=1 ;

n -1 . D
(55) In = pn[O’ Pn = H (__—) = a_ H q)i .

We remark that ¢, > 1 for n > 1.
The next lemma tells us that if ¢, is negative for some n > 1 then /, and
its successive Lagrange neighbours are all reduced.

LEMMA 5. If n>1 and ¢, <0
then

(i) a,>0, for m>n-—1,
and

(i)) 1, = a,[l, O] is reduced for m > n.

Proof. (1) As g, > 1 and (]_>n < 0, we see that &)HH = —
q)n — {qn

so ¢, <0 for m=>=n. For m>n we have ¢mzw>l and
2a,,

< 0, and
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Om = —2——[ <0, so that a,>0 and |b,|<)/D. By (5.1) we have
am =
D - b’ = 4a,a,_, >0, so that a,_; > 0. This completes the proof that

a,>0form>n-1.

(i) We have I, = an[l, dm] = a@mll, W], wWhere W, = O + [|Om]]. For
m>2nz2l,asy,>20,>1and — 1<y, = O + [|0n]] <0, we see that vy,
is a reduced number, and so the ideal I,,(m>n) is reduced.

Next we define two sequences of integers {A4,} and {B,} for n > — 2 by

(5.6) {A—Z:O’ A—I= 17 An':QnAn—l+An—29

B,=1, B_,=0, B,=q,B,-1+ B,_.

These sequences have the following basic properties:

| B, _ —A,_
(5.7) O = —( 20 2), n>0,
Bn—lq)O“An—l
A, 1, +A,_
(5'8) q)(): Iq) 2> n,?(),
Bn—1¢n+Bn—2
(59) Aan—l _An—an = (_l)n—l’ n 2 — 1 ’
( _
1+)5\y"!
: an( 21/) , n=0,
(5.10) 4. {45\
if go>=1thenAd, > 5 , n=0,
\
A, —1)n-
(5.11) A gy = D . n>0,
Bn Bnq)n+1 + Ban—l
(5.12) (= 1)" (0 — d0) 1
. - 0~ Qo) = —
(B]21—1(DH+BH—1BI1—’2)
1
- ) ’ n>os
(Bn—1¢n+Bn—1Bn—2)
(2.13) G1... §p = B, 10+ B, >, n >1.

We now briefly mention how these properties can be proved. The equalities

. The assertion

(5.8) and (5.13) follow by induction using ¢, = g, +

n+1
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(5.7) is just a reformulation of (5.8). The assertions (5.9) and (5.10) follow
by induction using (5.6); (5.11) follows from (5.8) and (5.9); and (5.12) follows
from (5.11).

The next result shows that &),, does eventually become negative.

LEMMA 6. (Compare [12]: Corollary 4.2.1) Let

I Log(@/)/D) 5 )
= - = ~? 2 )
(5.14) M, = max (2 Log(1+/3)/2) 2

For n> M, we have (I)n < 0.

Proof. For n > M,, we have n > 2, and, appealing to (5.10) and (5.14),
we obtain

1+l//5 2a—3 A 1
(515) B, 1B, 2 22— = — -
2 VD | do— b
If ¢,> 0, then, by (5.12), we have
[0 — ol 1 :
— < max — .
(DO O Bi—lq)n_{“Bn—an—z Bi—lq)n‘*'Bn_an_z
1
<—,
Bn—an—2

which contradicts (5.15). Hence we must have b, < 0, for n = M,.

The next proposition gives an upper bound for the number of steps needed
in the Lagrange reduction process to obtain a reduced ideal / from a given

primitive ideal I, of Op and at the same time gives upper and lower bounds
for & in the relation I = &1,.

PROPOSITION 7. (Compare [12]: Theorem 4.3) Let I, = ay[l, dy] be a
primitive ideal of Op with ay> 0. Then the Lagrange reduction process
applied to 1, yields a reduced, primitive ideal I equivalent to 1, with

1
(5.16) I=08, —<8<2,
. o

in atmost M, steps. All the subsequent Lagrange neighbours of I are also
reduced.
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Proof. Let ny, be the least positive integer such that (f)no < 0. By
Proposition 7 we have ny < M,. By Lemma 5 the ideal I,, is reduced, and
Any-1>0,a,,>0.

We set
(
Qny-1 ’ .
| a ®reeeOpg—1, if I, -y is reduced ,
5.17 S = ¢
(5.17) an | |
\ a— D1v. Oy if I,,-, is not reduced ,
0

1
so that by (5.3) I = 08I, is reduced, and it remains to show that —

Ao
<o<2.
For ng > 2, by (5.13), we have
(5.18) PreeiOng-1 = Bug—2®ny—1+ Bpy—3,
so that
(5'19) &)1"'&)”0—1 :BnO—Z&)nO—1+Bn0—3>BnO—3>
- —a,._
by the definition of #n,. As ¢,¢, = : , for mn>1, we have
an
- - : ay

(5.20) (@1+es Org—1) (1o Grp—1) = (= 1)"0~ 3

ano—l
which shows (as ag> 0, @,,-1>0, ¢;>13G=1), ¢;>0(1 <i< ny— 1)) that

ny is odd. Hence ny >3 and we have B, _; > 1. Then, from (5.19) and
(5.20), we obtain

dy 1

(5.21) 1< Ppoee gy < :
ano—l Bn0—3

If I,,-1 is reduced then, by (5.17) and (5.21), we obtain

Any—1
N <8<

aO Bl’lo—?)

VD

If I,,-1 is not reduced then, as a,,_; > 0, by Lemma 4 we have a,, | > 7 .

/D

Further, as a,,>0 and D = bio + 4a,,-1a,,, we see that 1<¢,, <—

ano
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24, . .
miy Then, appealing to (5.20), we obtain
By
1< P Op, < 20
Leeo Opg < ————
nan0—3
so that, by (5.17), we have
an
—<d<
aO Bn0—3

It remains to consider the case ny = 1. If I is reduced then & = 1. If I, 1S

a 24y .
not reduced then & = - ¢; and, as above, we have 1 < ¢, <—, giving
do a
a
—<O<2.
do

1
Hence in all cases we have — < & < 2. All subsequent Lagrange neigh-
do

bours of I are reduced by Lemma 5. This completes the proof of Propo-
sition 7.

6. PERIODS OF REDUCED CYCLES

We show that any two equivalent reduced, primitive ideals of the same
order Op can be obtained from one another by using the Lagrange reduction
process described in §5.

PROPOSITION 8. ([5]: §31, [12]: Theorem 4.5) Let I = all, ] (a > 0)
and J = b[l,y](b>0) be two equivalent, reduced, primitive ideals of
Op, so that [1,y] = p[l,¢] for some p(>0)e K*. Interchanging 1
and J if necessary we may suppose that p>1. Set I,= 1. Then there
exists a non negative integer n such that J =1, and p = ¢...9,, SO
that J =1, = p,l.

Proof. Recalling that ¢, > 1(n > 1), we see from (5.10) and (5.13) that

the sequence {¢;...0,},-, is monotonically increasing and unbounded.
Hence there exists an integer n > 0 such that ¢;...¢, <p < Pi...d,41. As

p 1
— I,. If p = ¢;...9, then
Oy ... by a, e

a, 1
I, = —01...0.1 (by (5.5)), we have — J =
ap b
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