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304 G. ROUSSEAU

Zolotarev's Theorem. Finally in 4 we show how the main propositions can be

formulated in terms of operations on ordered sets rather than in the framework
of exterior algebras.

1. The exterior algebra A(M) of a module M (see, for example, [6]) satisfies
the skew-commutative property -öaü (a,beM). It follows that
for any permutation g of 1, 2, m,

tfco) sgn(o) Af=1 a{

If ai (i 1, m) and bj (j 1, n) are module elements then

(3) A?=1 ai A a;=1 ^ (-1)- A;=1 A Af= j fl/.

Also it is clear that

if Ar=1 a;=1 au Ar=1 A;=1 then A;=1 A?!, au A?=1 Ar=1 bij
while

if A^ A;=1 a;=j Ar=1 bu then A;=1 Af=1 ^,.1 - A^1 AJ=1 bu

In the first case, in passing from the antecedent equation to the consequent
equation the permutation undergone by the elements on the left is equal to that
undergone by the elements on the right; in the second case it is inverse.

The Jacobi symbol may be defined independently of the notion of
quadratic residue as follows ([9], [5], [3]). If n is an integer which is relatively
prime to the odd positive integer m, then the mapping

Knm (0 ni mod m (J » 0, 1, 2, m - 1)

is a permutation of the set {0, 1, 2, m - 1}; we define the symbol (n\m)
to be the signature of this permutation,

(4) (n\m) sgn(7t„m)

It follows from the definition that

(5) if n n'(mod m) then (n\m) (n'\m)

Also, since 7inn>m we have

(6) (nn'\m) (n\m) (nr\m)

Using (3) and the fact that m is odd, we see that since the permutation
/ / + r mod m interchanges the first r of the numbers 0, 1, m - 1 with the

last m — r it has signature (-l)r(^m~r) \. It follows that each linear

permutation i ni + rmodm has signature (n\m).
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2. To prove that (1) and (2) are equivalent when m and n are odd and

relatively prime, we consider permutations Py and V/ defined by

IXj(i) — ni + j mod m (i 0,m — 1 ;j 0# n - 1)

V/CZ) * + mJ mod n U 0,n - 1 ; / 0,m - 1)

We have

a/77-1 A 77 - I —AT?"! A 777 - 1

A/ 0 f\j Q a[ij(i),j — Ay _ o A/ 0 Ui,Vj{j)

because both sides are equal to AjJTö1 akmodm,kmodn- It follows that

A/7-1 A /77_1 /7 _ A777-1 A77-1 /7Ay 0 A/ 0 G\ij(i),j — A/ 0 Ay Q fl/,V/C/) •

The left side is

a;:0' («|/W) AjTo1 au (n\m)" A!" 0: a,-,-,

while the right side is

A/To' (/?71 n) A^-J (m|n)m A;."^1 A;j0' a,-,y

Thus

a;:0' a«1 «/,> (H«)m a-«1 a;:0' au.
From this it is clear that (2) implies (1), and the converse implication is

obtained if the altJ are taken to be basis elements of a free module.
Formula (1) may easily be proved by induction using (3), or even more

simply by observing that the permutation which transforms the pairs (/, j) from
lexicographic (row) order to dual-lexicographic (column) order inverts the
order in which (/,/) and (i' J') appear just when both

(i) i < V or (/ V and j < j') and

(ii) j > j' or U=j' and / > i') ;

since this condition is equivalent to / < Ï and j > j', the number of inversions

is
2

(2)' aS recluired-

3. The permutation 7i_leaves 0 fixed and transforms the numbers
1, m - 1 to reverse order, so in view of the evident formula

(")
(7) A?=I «, £-l)U AU
we have (on putting n m-1) the first supplementary law,
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m- 1

(8) (-1M (-1) 2

As is well known, formulas (2), (5), (6) and (8) suffice for the calculation
of the Jacobi symbol, and the other standard properties can be deduced easily
from them (cf. [3], [2]). However they may also be proved directly by the

present methods by suitably adapting the arguments in [2] and [4]. One can
also readily establish by the present methods Schur's generalisation of the

Zolotarev-Frobenius-Lerch Theorem, according to which, for odd m, a

^-dimensional integral linear transformation A, considered as a

transformation of the fc-tuples of residues modulo m, has signature (dtt{A)\m)
(cf. [8], [4], [2]).

In 1 we defined the Jacobi symbol independently of the notion of quadratic
residue. The crucial connection is established by Zolotarev's Theorem [9]:

(9) nRp iff (n\p) 1 {l)(p)(ri)

To prove this we may use the formula

I N / \ TT Knp(i) ~ Knp(i
(n\p) sgn(nnp) [[i>r :

i - i

Calculating modulo p, we have

(n\p)=n,>,' (ni-ni')/{iÜ ,•>,-«

np(p-1)/2 n(p-1)/2 (modp)

and so (9) follows by Euler's criterion.

4. We have seen that the theory of quadratic residues may be deduced from
three propositions of exterior algebra, namely (1), (3) and (7). These essentially
combinatorial propositions may also be formulated in terms of ordered sets.

If E and F are linearly ordered sets (supposed disjoint) then as is known
there are two sums, E + Fand F + E, defined on the union, and two products,

F. Fand F. F, defined on the Cartesian product; also one considers the dual

or opposite, F*, defined on the same base set as F. If E and F are finite then

E + F F + E, E. F F. E and F* E, but in each case one may ask what
is the signature of the (uniquely determined) isomorphism, considered as a

permutation of the base set. The answers are contained in the following three

propositions, which correspond to (7), (3) and (1) respectively.
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