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ON THE INVERSIVE DIFFERENTIAL GEOMETRY
OF PLANE CURVES

by G. CAIRNS !) and R. W. SHARPE ?)

§1. INTRODUCTION

In this article we study the extrinsic inversive geometry of curves in the
Euclidean plane R2 under the inversive group G = PSL,(C)~ of general
Mobius transformations. This is PSL,(C) extended by complex conjugation.
PSL,(C) itself is the special, or orientation preserving Mdobius transforma-
tions. An introduction to classical inversive geometry may be found in [18].

As our model for this geometry we take the complex plane C (with coor-
dinate z = x + iy) together with the point at infinity, co. The underlying
topological space is of course S? and G is the group of conformal and anti-
conformal transformations of S2, but we use the standard Euclidean metric
on C. We shall assume that all our curves are oriented and smooth.

In §2 we recall Coxeter’s invariant (cf. [5]), the “‘inversive distance’’,
between two non-intersecting circles. This is the imaginary part of their
imaginary angle of intersection. Based on this idea we obtain a proof of a result
of Kneser (cf. [9], p. 48) which says that on a vertex-free part of a curve vy
the osculating circles never intersect. Using the square root of the inversive
distance between neighbouring osculating circles on y we obtain an invariant
1-form w (the infinitesimal inversive arc-length). This 1-form was apparently
first discovered by H. Liebmann in 1923 [12], although the name of G. Pick
is also mentioned by Blaschke in [2]. If vy is parametrized by the arc-length s
and if k(s) denotes the curvature at the point y(s), then the I-form ® can
be identified as the 1-form ]/‘]—K'(—S)_’ ds (cf. our §2, or [3], p. 92), and can
be extended continuously over the vertices. It follows that the set of vertices
(points where k’(s) = 0) of a curve is invariant under the inversive group. The
integral of this invariant 1-form gives the inversive arc-length, v = jco, a
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natural invariant parameter for curves in inversive geometry. We end the
section with a table for the inversive arc-length for various conics.

The classical four vertex theorem, due to Mukhopadhaya in 1909, states
that every simple closed curve in R? has at least four vertices. Though the
standard proof is easy in the case of convex curves, Kneser’s 1911 [11]
generalization to the non-convex case is strangely more complicated, and the
result is usually stated without proof in introductory texts. Simple and elegant
proofs have been given by Valette in 1957 [17] (cf. also Pinkall 1987 [15]) and
Osserman in 1985 [14]. The theorem is also known to be true for S? but the
usual proof is again quite complicated. Furthermore it is easy to construct
simple closed curves on the torus with only two vertices. In § 3 we present a
simple new proof of the four vertex theorem for (not necessarily convex) simple
closed curves on R? based on the conformal invariance of the vertices. The
moral is that the four vertex theorem is really a theorem in inversive
differential geometry, where the larger symmetry group is a powerful aid. In
§4 we consider a generalization of the form ® to curves y on an arbitrary
Riemannian surface given by the formula:

Wy =)/ |x,lds

where k, is the geodesic curvature of the curve on the surface. It turns out
that this form is invariant under maps between surfaces which preserve the
curves of constant geodesic curvature, the so-called ‘‘concircular maps’’. As
a consequence of this we show in §5 the following result.

THEOREM. If vy is a smooth, null-homotopic, simple closed curve on a
complete Riemannian surface M of constant curvature, then the geodesic
curvature of vy has at least four local extrema.

The remainder of the paper continues a general study of curves in the
inversive plane. The method used throughout is the method of moving frames
in one of its simpler incarnations, systematically developed by A. Tresse [16]
called ‘‘the method of reduced equations’’. In fact the spirit here is much the
same as the first part of E. Cartan’s beautiful book [4].

In §6 we show that for each non-vertex point p on a curve vy there is a
unique orientation preserving Mobius transformation geG such that
g~ 1(p) = 0 and the Taylor expansion for the curve g ~!(y) at the origin has
the normal form

3 5

1.1 y=i£+Q—+O(x6)
6 60
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natural 5! = 120) represents a normalization of Q to simplify formula 1.3
below and the calculations for the loxodrome in §9. It is clear that Q is
invariant under (special) Mébius transformations and so we call it the inversive
curvature of y at p. It can be calculated in terms of the Euclidean
curvature k(s) and its derivatives with respect to Euclidean arc-length by means
of the formula

where + = sgn(x’). The denominator 60 (rather than the seemingly more
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We note that although the sign of Q depends on the orientation of the plane,
it is nevertheless independent of the orientation of the curve. The cur-
vature Q corresponds to the invariant /2 which Blaschke ([2], end of §21)
obtains by a completely different (and roundabout) method).

The procedure described above gives rise to a Frenet lift
g:y — [vertices] = G, which is a curve on the Lie group G parametrized by
inversive arc-length. In §7 we show that parallel translation of the tangent
vector dg/dve T,(G) back to the identity by g ! yields the formula

0 1

¢ A %sgn(K’)(Q—i) 0

It follows that the curvature Q determines the vertex-free curve up to a Mobius
transformation.

The curves with Q constant are especially interesting as they constitute the
‘“‘lines and circles’’ of inversive geometry. These are studied in §9 and turn
out to be what Blaschke [2] calls ‘‘loxodromes’’; that is, they are the equi-
angular spirals (Bernouli’s spira mirabilis) and their inversive images.
Loxodromes are the orbits of I1-parameter subgroups of loxodromic
transformations.

In §10 we use a simple notion of contact to define and determine the
complex of smooth, local “‘geometric’’ differential forms A% on a vertex
free curve in R'. This is a universal complex equipped with a homomorphism
W, A, = A*(y) to the de Rham complex of y for every vertex free curve v,
and satisfying the invariance property that ¥, = g*¥,, for every geG. It
turns out that A%, is generated by the function Q and the form ® so that

these are essentially the only interesting smooth local invariants of curves in
R2.
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