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MANIN’S PROOF OF THE MORDELL CONJECTURE
OVER FUNCTION FIELDS

by Robert F. COLEMAN

In the process of translating Manin’s proof of Mordell’s conjecture over
function fields into modern language we found a gap. The arguments in [M]
do not suffice to prove Manin’s Theorem of the Kernel. We were able to fill
this gap by using those arguments to prove a weaker theorem (Theorem 1.4.3
below) and combining this with the function field analogue of Siegel’s
Theorem and Manin’s ideas to complete the proof of Function Field Mordell.
More recently, Chai [C] (see also the Appendix, below) has applied Deligne’s
Theorem on the semi-simplicity of the action of the monodromy group to
deduce Manin’s Theorem of the Kernel as reformulated below from the weaker
theorem mentioned above. I believe that all this is testimony to the power and
depth of Manin’s intuition. We were also able to make Manin’s analytic proof
completely algebraic. Manin has kindly verified that the corrections discussed
herein are necessary and apt (see letter to Izvestia...)

In light of the above and because of the ground braking nature of the work
we believe that Manin’s paper ‘‘Rational Points of Algebraic Curves over
Function Fields’ merits a clear modern treatment. We attempt to give one
below.

I. THE THEOREM OF THE KERNEL

0. REVIEW OF CONNECTIONS AND HYPERCOHOMOLOGY

(See also [D-1].) Let S be smooth connected scheme over a ring K.
Let .75 denote the structure sheaf of S, Qf the sheaf of p-forms on S
over K and d the exterior derivation from Q% to Q%*'. Let %’ be a coherent
sheaf on S. A connection on & over K is a K-linear homomorphism
V: 7 = Q¢® 7 satisfying the Leibnitz rule

We are indebted to Arthur Ogus for many helpful and stimulating discussions.
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V(fs) =df @s+ fV(s).

for f alocal section of _Z% and s a local section of %, We will also say that
(~, V) is a connection on S. There is a K-linear map which we also denote
by V from Q% ® & — Q%' ® 5 characterized by

Vio®s) =do ®s+ (1P Q V(s)

for  a local section of Qg and s a local section of % We say that (%, V)
is integrable if the map Vo V: %= Q% ® ~ is zero. In this case

Aol SL0i L5

is a complex. We let H(~, V) denote the i-th hypercohomology group of
this complex. When K is a field of characteristic zero, integrability also implies
that >’ is locally free.

If (H, Vg) and (G, V) are two connections on S then there are natural
connections Vg ® Vs on H® G and Vg s on Hom 2, (H, G) characterized
by the formulas

Ve ® Veh®g) = Vug(h) @ g+ h ® Ve(g)
Vi,o(r)(h) = Vg(r(h)) — r(Vu(h))

for local sections 4 and g of H and G and a local section 7 of Homj/S(H, G).
We let H = Hom (H, /%) and %H = V4, /%, which Is a connection on H. It
is easy to see that V5 & %H equals Vg s under the natural identification of

Hom 2 (H, G) with G(x)}VI. We will need the following, easy to check,
lemma.

LEMMA 1.0.1. Suppose r € Hom z, (H, QIR G) = QR Hom ., (H, G).
Then

Vi, c(r)(s) = Vg(rs)) + (=1)2r(Vyu(s)) .

Since we will use it frequently in the following we will record here the
Cech definition of hypercohomology. (See also [H-1, Chapter 1 §3].) Suppose
(7", d) is a bounded below complex of Abelian sheaves on a topological
space S. Then we define the hypercohomology of % as follows: First let %
be an ordered open cover of S. We have the Cech complexes

Ci(%, 77 = ® ZI(U)
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where the sum runs over all intersections U of i + 1 distinct elements of .
Let d: Ci(%, 4) — Ci+ (%, S9) be the Cech co-boundary. We also have
boundaries d: Ci(%, &7) —» Ci(w, S +1).

Now let

C (U, &)= @ Cr(u, S 9)

where the sum runs over p + ¢ = n. For ¢ € C*(%, "), we let c79 denote
its p, g-th component. The hyper-coboundary

3:C(U, Y Crr (U, )
is defined as follows: For c € C"(w, %), we set
(Bc)P-7 = der=1a 4 (= 1)P~18cra-1 |

Then the hypercohomology of & with respect to Z,H'(S, &, %), is defined
to be Ker(d)/Image(d) and H (S, &) is defined to be an appropriate limit
of these groups over all ordered covers. In particular, if S is a scheme, &
is a complex of coherent sheaves and % is an affine open cover, then
H'(S, %) is naturally isomorphic to H'(S, &, ¥). If in addition S is affine
H (S, )= H@)).

1. EXTENSIONS OF CONNECTIONS

Let S be smooth connected scheme over a field K of characteristic zero.
Suppose (H, V) and (G, V) are integrable connections on S. The set of
isomorphism classes of integrable extensions of (H, V) by (G, V) forms a
group under Baer sum which we will call Ext(H, G).

PROPOSITION 1.1.1. Ext(H, G) = HI(G®I§(, Ve ®& %{).

Proof. Since Vy is integrable, H is locally free. Let % be an ordered
affine open cover of S such that H(U) is a free _Z5(U)-module for each
U e 7. Suppose we have an extension

0=(G, Vo) 2 (E, V) = (H, Vy) > 0

of connections. Let U e %. Since H(U) is free, there exists an Zs(U)-
module section sy: H(U) = E(U). Now let hy = Vosy — sy V. We claim
that Ay is an _#5(U)-module homomorphism from H(U) into Q3 ® G(U),
i.e. an element of Homﬁg(H,Q§®G)(U). Indeed, for f e Z5(U) and
v e H(U),
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