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L'Enseignement Mathématique, t. 36 (1990), p. 393-427

MANIN'S PROOF OF THE MORDELL CONJECTURE

OVER FUNCTION FIELDS

by Robert F. Coleman

In the process of translating Manin's proof of Mordell's conjecture over

function fields into modern language we found a gap. The arguments in [M]
do not suffice to prove Manin's Theorem of the Kernel. We were able to fill
this gap by using those arguments to prove a weaker theorem (Theorem 1.4.3

below) and combining this with the function field analogue of Siegel's

Theorem and Manin's ideas to complete the proof of Function Field Mordell.
More recently, Chai [C] (see also the Appendix, below) has applied Deligne's
Theorem on the semi-simplicity of the action of the monodromy group to
deduce Manin's Theorem of the Kernel as reformulated below from the weaker
theorem mentioned above. I believe that all this is testimony to the power and

depth of Manin's intuition. We were also able to make Manin's analytic proof
completely algebraic. Manin has kindly verified that the corrections discussed

herein are necessary and apt (see letter to Izvestia...)
In light of the above and because of the ground braking nature of the work

we believe that Manin's paper "Rational Points of Algebraic Curves over
Function Fields" merits a clear modern treatment. We attempt to give one
below.

I. The Theorem of the Kernel

0. Review of connections and hypercohomology

(See also [D-l].) Let S be smooth connected scheme over a ring K.
Let denote the structure sheaf of S, Qps the sheaf of p-forms on S

over K and d the exterior derivation from to Q£ +1. Let be a coherent
sheaf on S. A connection on Sf over K is a ^-linear homomorphism
V : -> Qls (g> S/y satisfying the Leibnitz rule

We are indebted to Arthur Ogus for many helpful and stimulating discussions.
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V(fs) df g s + /V (s)

for / a local section of and 5" a local section of S/. We will also say that
(5^, V) is a connection on S. There is a W-linear map which we also denote

by V from Q,ps g g/Q,ps+1 g 5/ characterized by

V (co gs) d(ù g s + - l)^co g V (s)

for co a local section of and s a local section of We say that (5^ V)
is integrable if the map V o V : _9^^ Q2S g 5^ is zero. In this case

g g/*g jg...
is a complex. We let Hl(Sg V) denote the z-th hypercohomology group of
this complex. When K is a field of characteristic zero, integrability also implies
that g/ is locally free.

If (H, V//) and (G, VG) are two connections on S then there are natural
connections V# (x) VG on H g G and Vh,g on Horn^ (f/, G) characterized

by the formulas

VH g VG(h g g) VH(h) g g + h g X7G(g)

VH,G(r)(h) VG(r(h)) - r(VH(h))

for local sections h and g of H and G and a local section r of Horn^ {H, G).
V /O v v

We let H Hom(//, ^#5) and VH VH> j?s, which is a connection on H. It
V

is easy to see that VG g VH equals V//jG under the natural identification of

HornG) with G g H. We will need the following, easy to check,
lemma.

Lemma 1.0.1. Suppose r e Qpsg G) Çlpsg Hom^dH, G).
Then

yhAr)iß) VG(r(s)) + (-l)^(V^))
Since we will use it frequently in the following we will record here the

Cech definition of hypercohomology. (See also [H-l, Chapter 1 §3].) Suppose

(gZ',d) is a bounded below complex of Abelian sheaves on a topological
space S. Then we define the hypercohomology of SZas follows: First let

V
be an ordered open cover of S. We have the Cech complexes

cm yj)©
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where the sum runs over all intersections U of i + 1 distinct elements of ©L

Let 8: Cl{^,yj) -+ C'+1(^,5^) be the Cech co-boundary. We also have

boundaries d: CG'"(^, 5^'+l).
Now let

Cn(^,V) © G^©//, :/«)

where the sum runs over p + q n. For c e Cn(ff, Sf we let cp'q denote

its p, q-th component. The hyper-coboundary

d:Cn(^,J^') -> Cn + l(f/,V)
is defined as follows: For c e we set

(dc)p'q dcp~1^ + (-1y^bcP'P-1

Then the hypercohomology of 5^with respect to if, H'{S, 3^ if), is defined

to be Ker(8)/Image(0) and H'OS, S/') is defined to be an appropriate limit
of these groups over all ordered covers. In particular, if S is a scheme, Sf
is a complex of coherent sheaves and ff is an affine open cover, then

H"(S, V) is naturally isomorphic to H (S, ff). If in addition S is affine
H \S,V)

1. Extensions of connections

Let S be smooth connected scheme over a field K of characteristic zero.
Suppose (.H, VH) and (G, VG) are integrable connections on S. The set of
isomorphism classes of integrable extensions of (H, VH) by {G, VG) forms a

group under Baer sum which we will call Ext(//, G).

Proposition 1.1.1. Ext(H,G) Hl(G(g)H, VG® V©.

Proof. Since VH is integrable, H is locally free. Let if be an ordered
affine open cover of S such that H(U) is a free (G)-module for each
U e if Suppose we have an extension

0 -> (G, VG) - (E, V) - (H, V© -> 0

of connections. Let U e if. Since H(U) is free, there exists an (G)-
module section sa:H(U) E(U). Now let hv V&Su - svo X7H. We claim
that hu is an ff (G)-module homomorphism from H(U) into Qls (x) G(G),
i.e. an element of Hom^(if, Cf® G)(G). Indeed, for / e ff(G) and
u e //(G),
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