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= 3(8) * (Z(T)=Z(f)) ¥ (0)
(where gV (x) = g(—x), g € ER?), x € R?),

= 2(8) * () *2(T)") (0)
= X(S) * (E(f)*=(T)) as X(T), Z(f) are even
= X(S) * (Z(T)*Z.[) (0)
= <Z(SxT),Xf>
(using ZS * 2T = ZS* T)
= <8T, [ >
= ST = f(0) asf is even
= <§, Txf>.

On the other hand,
<3(S), XUT*f)> = <S8, T*f> .

The lemma is proved.

Finally, we come to the main result of the section: the spectral analysis
theorem for radial functions. As we remarked in the introduction, the
development in this section is along the same lines as in [1] where the
corresponding result for rank-1 non-compact symmetric spaces is proved.

THEOREM 2.4. Let ¥ be a closed nonzero subspace of &(R?)..q4 such
that for all Te&'(R?),,y and fe¥,T* fe¥. Then there exists heC
such that ¢, € 7.

Proof. Consider the closed and nontrivial subspace M of &(R), such that
(7)) = M. By Lemma 2.3, M is closed under convolution with elements
S e &'(R),. By the remarks following Theorem 2.1 now, there exists A e C
such that the functions ¥, € M, where ¥,(x) = (e**+e~™)/2, x € R. A simple
calculation now shows

<, > = <¥,Zf> feClR),4 <= ER?
Thus £¢, = Y, and hence ¢, € 7.

rad -

3. POMPEIU PROBLEM FOR THE M(2) ACTION ON R?

The Euclidean motion group M(2) is the semidirect product of R? with
the rotation group SO(2, R).
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M(2) = {(x, 5): x € R, o € SO(2, R)}

where
(x, 0) (¥, 0') = (x+0oX, 605

is the group multiplication and an element (x, o) acts on y € R? by the rule
(x,0)y = oy + x.

Let E be a relatively compact subset of R? of positive Lebesgue measure.
If /e C(R?), the space of continuous functions on R?, the vanishing of the
integrals

J f(x)dx = 0, forall ge M(2)

gE

1.e. J f(x)dx = 0, forall ceSO2,R), yeR?
GE+y '

can be restated as f * IGE = 0, for all 6 € SO(2, R) or, equivalently f° IE =0
for all o € SO(2, R), where f°(x) = f(ox) and 14(x) = 14(—x), x e R%. We
write

U ={feERY): fox1, =0 forall oeSOQ2,R)}.

From elementary smoothing arguments, it follows that E has the Pompeiu
property if and only if % = {0}. % is a closed subspace of &R?*) which is
invariant under translation and rotation. Let again

¥ = {f € ERY)pq: f * 1z = 0}

Then ¥~ < %, v is a closed subspace of &[R?),,q and T *¥ < ¥ for all
T e &'R?),,q4-

We now prove the main theorem of [12] mentioned in the Introduction.
(However, we restrict ourselves to indicator functions of sets, rather than
general distributions of compact support.)

THEOREM 3.1 (Brown, Schreiber and Taylor). A relatively compact subset
E < R? of positive Lebesgue measure does not have the Pompeiu property
if and only if there exists o€ C,o # O such that

14(z,,2,) = 0 whenever z3% + z3 = o?,

where IE is the Laplace-Fourier transform of the characteristic function 1g
of E.
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Proof. The if part is immediate; for instance, take any z = (z, z,) such
that z2 + z2 = o2 and consider the function ¢” *. To prove the only if part,
suppose E has the Pompeiu property. Let % and ¥~ be defined as above; by
assumption we have % # {0}. We shall now prove that ¥~ # {0}. Choose
f e with f(0) # O (this is possible as % is translation-invariant). Define

h(y) = J floyds, yeR?.
SO(2,R)

As % is SO(2, R)-invariant, the function he%. Further, h is a radial
function by definition, so h e ¥". But then h(0) = f(0) # 0. Thus ¥~ # {0}
and by Theorem 2.2, we have A e C such that ¢, € #". Further, ¢, is the
constant function and hence ¢, cannot belong to ¥ < %. So A # 0 and
o, € ¥~ and, in particular, ¢, * IE(O) = 0. In the notation of Section 2, this
means %15(A) = 0 and hence 1 A, 0) = 0. The SO(2, R)-invariance of %
now shows that IE vanishes on SO(2, R) (A, 0). The analyticity argument
in Lemma 2.2 will now prove that 1E vanishes at all (z;,z,) where
z} + z3 = A% This proves the theorem.

The condition in Theorem 3.1 can also be given a representation theoretic
interpretation in terms of the so-called class-1 principal series representation
of M(2) — see Section 7.3 for a more precise statement. As we remarked
earlier, the condition of the theorem is verifiable only for sets having
strong geometric properties. We quote two results from [12] without proof.

' THEOREM 3.2 (Brown, Schreiber and Taylor). The ellipse

2 2
E = {(x,y)eRZ:—2—+g—2—< 1}

a

has the Pompeiu property if and only if a,b > 0 and a # b.
When a = b > 0, D is the disc and we have

1p(z1,22) = const. J1([/z2 + z2) /| 22+Zzs (z1,22) e C?,

where J, is the Bessel function. Since there are infinitely many zeros of

J1, D does not have the Pompeiu property. The next theorem, obtained
through a careful estimate ([12]) needs a definition.

Definition 3.3. Let I' =T(¢), — 1 <t <1 be a Lipschitz curve in R2
with well defined (a.e.) unit tangent vectors 7(¢) = I"(¢) /|I"(¢)]. The point
p = T(0) is a corner of T if both the right and the left limits of 7(¢) as t — 0
exist and are not multiples of each other.



76 S. C. BAGCHI AND A. SITARAM

THEOREM 3.4 (Brown, Schreiber and Taylor). Let Q be a compact
connected subset of R?. Suppose that there is a half-plane H and a unique
point pe QN H of maximal distance from the boundary 0H of H. If the
boundary of Q near p is given by a Lipschitz curve with a corner at p
then Q has the Pompeiu property.

Let now Q be a bounded Borel subset of the plane of positive measure
and suppose that Q does not have the Pompeiu property. By Theorem 3.1,
1, vanishes on the algebraic variety M, = {(z1,25):27 + 23 = o} for
some o # 0. As observed in [33] and [34], 1o/(z2+2z2—0?) is now an
entire function and standard Paley-Wiener theorem yields the following
proposition.

ProposITION 3.5. If Q is a bounded Borel subset of R?* of positive
measure Wwith IQ vanishing on M,, o # 0, then the function ¢(z,, z,)
=1q/ (Zf + Z% —a?) is an entire function on C? which is the Laplace-
Fourier transform of a distribution of compact support.

Proposition 3.5 immediately gives rise to a partial differential equation.
For, if T is the distribution whose Fourier transform is g, then from

(Z%—I—Z%—ocz)g(zl, zy) = lolzy, 2,)

we have
(3.1) AT + &*T = — 1,

where A is the Laplacian. Conversely, if there exists a distribution T of
compact support satisfying the equation (3.1), then ig vanishes on M, and
hence Q does not have the Pompeiu property. We also remark that if Q is,
further, a bounded simply connected open set and the equation (3.1) has a
solution, then o? is necessarily a positive real number as can be seen from
a simple Green’s theorem argument (see [34] for a proof). The equation
has been studied in [3], [33] and [34]. In [33] it was proved that a
solution of (3.1), if it exists is actually a function. We shall discuss some more
of these results in the next section. We end the present section by quoting the
main theorem of [34]. This result extends Theorem 3.4 and, barring sets of
rotational symmetry all known sets failing to have the Pompeiu property
are covered by this result. For a bounded subset Q = R? we denote by
0*Q the boundary of the unbounded component.
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THEOREM 3.5 (S. A. Williams). Let Q be a bounded open subset such
that the equation AT + o*T = — lg has a function solution of compact
support for some o > 0. Let R,K,L be positive real numbers such that
L > KR. Assume that for Pe€d*Q there exists a coordinate system (X, y)
around P so that

i) O = (—R,R) x (—L,L) intersects 0Q in the graph y = f(x) of

a Lipschitz function f with Lipschitz constant K, and
) 0nQ ={(xy:]|x| <R and f(x) <y <L}
Then f is real analytic in a neighbourhood of P.
Thus if we restrict ourselves to the class & of simply connected bounded

open sets with Lipschitz boundary then Q € & can fail to have the Pompeiu
property only if 0Q is real analytic.

4. A LONG-STANDING CONJECTURE !

The following Conjecture has received quite some attention in the literature

([31, [101], [34]).

Conjecture. 1If Q = R? is in the class & described above and if Q does
not have the Pompeiu property, then Q is a disc.

As pointed out before, the work of Williams shows that is is enough to
consider Q with dQ real analytic. For Q € &, the existence of (a necessarily
positive) a? for which (3.1) has a distribution solution of compact support
i1s equivalent to the existence of a positive y for which the following
overdetermined system has a solution.

(4.1) AT +yT =0 on Q
T = constant #0 on 0Q,0T/on =0 on 0Q

(see [34] for details). Thus the conjecture can be stated as follows:

If for Qe 2, there exists ¥ > 0 for which (4.1) admits a solution, then
Q is a disc.
It is remarked in [34] that the conjecture is closely related to a result of

Serrin ([25]): If Q is a bounded connected open set with smooth boundary
on which

Au= —1 on Q
u = 0,0u/0n = constant on 0Q

has a function solution, then Q must be a disc.
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