Die plastische Biegung eines Balkens, dessen E-Modul sich über die Querschnittshöhe ändert

Autor(en): Fekete, K.A.

Objekttyp: Article

Zeitschrift: Schweizerische Bauzeitung

Band (Jahr): 92 (1974)

Heft 31

PDF erstellt am: 26.09.2024

Persistenter Link: https://doi.org/10.5169/seals-72429

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

Die plastische Biegung eines Balkens, dessen E-Modul sich über die Querschnittshöhe ändert

Von K.A. Fekete, dipl. Ing., Stäfa

Problemstellung

Beim Bestreben, die metallischen Werkstoffe (vor allem Stahl) besser auszunützen, treten Berechnungsmethoden zur Bestimmung der Spannungen in den Vordergrund, die nach Überschreiten der Elastizitätsgrenze auftreten. Die hierfür erforderlichen theoretischen Grundlagen sind längstens vorhanden, und die Entwicklung der Grosscomputer hat deren Anwendung weite Gebiete eröffnet. Da jedoch die Zahl der zur Verfügung stehenden Programme (mindestens gegenwärtig noch) recht bescheiden, und ihre Benützung ziemlich kostspielig ist, muss der berechnende und konstruierende Ingenieur häufig ohne sie auskommen. Das hat zu der Entwicklung der nachfolgend beschriebenen Berechnungsmethode geführt. Sie bezieht sich auf die plastische Biegung von Balken und erweitert die aus den einschlägigen Fachbüchern wohlbekannte Methode, indem sie auch dann angewendet werden kann, wenn sich der E-Modul (Sekantenmodul) über die Balkenhöhe, d.h. örtlich und/oder auch zeitlich bereits im unbelasteten Zustand ändert. Dabei ist es möglich, die effektiven Spannungs-Dehnungskurven des Materials im plastischen Dehnungsgebiet und sogar ihre Temperaturabhängigkeit voll zu berücksichtigen.

Ein über die Querschnittshöhe veränderlicher E-Modul ist z.B. in den plastifizierten Querschnitteilen von Metallbalken zu finden. Örtlich und zeitlich veränderlich ist der E-Modul z.B. in einer sich von hoher Temperatur abkühlenden Metallwand oder Kruste, Bild 1. Hier ruft das Temperaturgefälle die E-Modulunterschiede hervor, wozu noch die durch die Plastifizierung verursachten hinzukommen. Im Maschinenbau werden oft wärmebehandelte (nitrierte, einsatzgehärtete, aufgekohlte) Maschinenteile verwendet. Sie weisen eine mehr oder weniger dicke Schicht auf, deren Festigkeitseigenschaften von denjenigen des darunter liegenden Materials stark verschieden sind. Für die Berechnung der plastischen Biegung von solchen Teilen eignet sich die Berechnungsmethode auch, da sie imstande ist, über die Querschnittshöhe veränderliche Spannungs-Dehnungskennlinien zu berücksichtigen.

In der vorliegenden Arbeit, die eine ingenieurmässige Behandlung des Problems darstellt, wird eine graphoanalytische Methode skizziert. Sie gestattet die Berechnung der Biegespannungen und Dehnungen in Balken auf einfache Art und mit vertretbarem Arbeitsaufwand.

1. Annahmen

Als Ausgangspunkt unserer Betrachtung seien die Annahmen angegeben, die der Lösung des Problems zugrundeliegen; sie lauten:

a) Der Balken ist vor der Belastung gerade

DK 539.377

- b) Die äussere Belastung greift in der Symmetrieebene des Balkenguerschnitts an
- c) Die vor der Deformation zur Balkenachse senkrechten Querschnittsebenen bleiben auch nach den Deformationen eben, es findet also keine Verwölbung statt (Bernoulli)
- d) Der Balken wird nur durch äussere Kräfte belastet
- e) Die von den Querkräften hervorgerufenen Schubspannungen werden vernachlässigt (einachsiger Spannungszustand)
- f) Die Querschnittsabmessungen sind klein gegenüber der Balkenlänge

Aus Annahme d) folgt, dass in die Betrachtungen thermische Spannungen (wenn die Temperaturverteilung und die mechanischen Randbedingungen so beschaffen sind, dass solche Spannungen entstehen) nicht mit einbezogen werden.

2. Theoretische Grundlagen

Unserer Berechnung legen wir das finite Spannungs-Verzerrungsgesetz von Henckey zu Grunde, da sie bedeutend einfacher zu handhaben sind, als die differentiellen Gesetze von Prandtl/Reuss und mit diesen doch übereinstimmen, solange das Verhältnis der Hauptspannungen unverändert bleibt, was in unserem Fall ja zutrifft. Das Henckysche Gesetz in der 1. Hauptspannungsrichtung lautet:

+

(1)
$$\varepsilon_{1} = \varepsilon_{1e} + \varepsilon_{1p} = \frac{1}{E} \left[\sigma_{1} - \nu (\sigma_{2} + \sigma_{3}) \right] + \frac{1}{\Phi} \left[\sigma_{1} - \frac{1}{2} (\sigma_{2} + \sigma_{3}) \right]$$

wo ɛ1e bzw. ɛ1p den elastischen bzw. plastischen Dehnungsanteil, σ_1 , σ_2 , σ_3 die Hauptspannungen, ν die Querkontraktionszahl, E den Elastizitätsmodul und $\Phi = tg \varphi$ den Plastizitätsmodul bezeichnen. Für den einachsigen Vergleichszustand nach Annahme e) (es wird nur dieser Fall untersucht) geht Gl. 1 über in

(2)
$$\varepsilon_V = \varepsilon_{Ve} + \varepsilon_{Vp} = \sigma_V \left(\frac{1}{\operatorname{tg}\alpha} + \frac{1}{\operatorname{tg}\varphi} \right) =$$

 $= \frac{\sigma_V}{\Psi} = \frac{\sigma_V}{\operatorname{tg}\psi} = \frac{\sigma_V}{E_s}$

Die Bedeutung der Winkel α , φ und ψ geht aus Bild 2 hervor. Dabei bezeichnet tg $\psi = E_s$ den Gesamt- oder Sekantenmodul. Es besteht somit ein einfacher Zusammenhang, der ieweils durch die o, e-Kennlinie des betreffenden Materials festgelegt ist. Allerdings muss beachtet werden, dass der

Bild 2 (rechts). Graphische Deutung des Elastizitätsmoduls $E = tg \alpha$, des Plastizitätsmoduls $\Phi = tg \varphi$ und des Gesamtmoduls $\Psi = tg \psi$ im σ_1 -, ε_1 -Diagramm

Schweizerische Bauzeitung · 92. Jahrgang Heft 31 · 1. August 1974

Bild 3. Element eines auf Biegung beanspruchten Balkens mit den im Text verwendeten Bezeichnungen. x = Achsedurch den Schwerpunkt des Balkenquerschnittes. $\rho =$ Schwerpunktabstand vom Krümmungsmittelpunkt. R = Abstand der neutralen Faser vom Krümmungsmittelpunkt. $R-\rho =$ Verschiebung der neutralen Faser infolge veränderlichen E-Moduls

Sekantenmodul $E_s = tg\psi$ nicht nur von der Dehnung ε , sondern auch von der Temperatur ϑ und der Deformationsgeschwindigkeit $\dot{\varepsilon}$ abhängig ist, entsprechend

 $E_s = f(\varepsilon, \vartheta, \dot{\varepsilon})$

Nachfolgend wird nur die Bezeichnung E_s verwendet, ungeachtet ob die Dehnungen elastisch oder plastisch sind.

Nun gehen wir dazu über, die zur Durchführung der Berechnung notwendigen Gleichungen abzuleiten. Die bekannte Differentialgleichung der Biegung mit den in Bild 3 verwendeten Bezeichnungen ist

(3)
$$\rho \frac{d\varphi}{dx} + y \frac{d\varphi}{dx} - 1 = \frac{\sigma}{E_s} = \varepsilon$$

Diese Gleichung, mit dF = b dy multipliziert und über den Querschnitt integriert, geht über in

(4)
$$\rho \frac{d\varphi}{dx} A + y \frac{d\varphi}{dx} B - A = 0$$

worin

(5)
$$A = \int_{F} E_s b \, dy$$
 bzw. $B = \int_{F} E_s b \, y \, dy$

Aus Gl. (4) ergibt sich

(6)
$$\frac{d\varphi}{dx} = \frac{A}{\varphi A + B} = \frac{1}{\varphi + B/A}$$

Aus Gl. (6) folgt, dass der Abstand der neutralen Faser vom Krümmungsmittelpunkt nicht ρ ist sondern

(7) $R = \rho + B/A$

Setzen wir Gl. (6) in Gl. (4) ein, dann erhalten wir nach Umformung

(8)
$$\sigma = E_s \frac{1}{\rho + B/A} (\rho + y) - E_s$$

Aus Gleichgewichtsgründen muss für das Biegemoment M gelten:

$$(9) \qquad M = \int_{F} \sigma \ y \ dF$$

Gl. (8) in Gl. (9) eingesetzt, gibt:

(10)
$$M = \int_{F} y \left[E_s \frac{1}{\rho + B/A} \left(\rho + y \right) - E_s \right] b \, dy$$

Bild 4. Verlauf des E_s -Moduls nach Gl. (15a) für einen Rechteckquerschnitt

was nach weiteren einfachen Umformungen und nach der Einführung der Abkürzung

(11)
$$C = \int_{F} E_s y^2 b \, dy$$
zu

(12)
$$M = \frac{\rho B + C}{\rho + B/A} - B$$

führt. Um einen Zusammenhang zwischen σ und M zu erhalten, lösen wir Gl. (12) nach ρ auf:

13)
$$\rho = \frac{1}{M} \left(C - \frac{B^2}{A} \right) - \frac{B}{A}$$

(

und setzen Gl. (13) in Gl. (10) ein. Das Resultat ist

(14)
$$\sigma = E_s M \frac{y - B/A}{C - B^2/A}$$

Die Dehnung über den Querschnitt wird

(15)
$$\varepsilon = \frac{\sigma}{E_s} = M \frac{y - B/A}{C - B^2/A}$$

Nun verfügen wir über die zur Durchführung der Berechnung notwendigen Gleichungen. Die Lage der neutralen Faser kann aus Gl. (7), die Dehnungen können aus Gl. (15) und die Spannungen aus Gl. (14) berechnet werden. In diesen Gleichungen stehen A, B und C je für einen Integralausdruck. Sie müssen in den meisten Fällen numerisch gelöst werden, da der E_s -Modul, wenn überhaupt, nur ausnahmsweise in analytischer Form ausgedrückt vorliegen dürfte. Für die numerische Integration empfiehlt sich die Trapez- oder die Simpsonsche Formel.

Bevor der Berechnungsgang erläutert wird, wollen wir uns über den Einfluss der Verteilung des *E*_s-Moduls auf die Lage der neutralen Faser ein Bild verschaffen. Dazu wird ein Rechteck-Querschnitt und eine Verteilung des *E*_s-Moduls gemäss

(15a)
$$E_s = a\left(y + \frac{h}{2}\right)^n$$

zugrunde gelegt; Bild 4 zeigt den Verlauf des E_s -Moduls. Gl. (7) wurde mit n = 0, 1, 2 und 3 durchgerechnet. Die Ergebnisse sind in Tabelle 1 zusammengefasst. Daraus ist zu entnehmen, dass sich die Lage der neutralen Linie mit zunehmender Potenzzahl n immer mehr gegen die Aussenfaser, d.h. gegen die kältere Seite hin verschiebt.

Schweizerische Bauzeitung · 92. Jahrgang Heft 31 · 1. August 1974

Rechts:

Bild 6. Spannungs-Dehnungslinien des für das Berechnungsbeispiel gewählten Materials bei verschiedenen Temperaturen. Der strichpunktierte Linienzug zeigt, wie die Fliessspannung und die entsprechende elastische Dehngrenze für eine gegebene Temperatur interpoliert werden können

3. Der Berechnungsgang

Dem zur Erläuterung des Berechnungsganges dienenden Beispiel wird die in Bild 5 dargestellte Temperaturverteilung zu Grunde gelegt. Um ein einfaches Beispiel zu erhalten, wollen wir von zeitlichen Aenderungen der Temperaturverteilung absehen. Das Verhalten des Materials (wiederum nur für dieses Beispiel) wird als ideal-elastoplastisch und von ε unabhängig angenommen, Bild 6. Die horizontale Temperaturskala und die gestrichelte Hilfskurve in Bild 6 dienen zur Interpolation der Fliessspannung und der entsprechenden elastischen Dehngrenze zwischen den angegebenen Temperaturen.

Die Berechnung besteht aus einer sich nach den Genauigkeitsanforderungen richtenden Anzahl von Iterationsschritten. Die Dehnungen über den Querschnitt des mit dem gewünschten Biegemoment M belasteten Balkens werden aus Gl. (15) berechnet. Dabei wird angenommen, dass während der Belastung mit M die E_s -Verteilung unverändert bleibt. Das trifft natürlich nur bei denjenigen Fasern zu, welche noch nicht über die Fliessgrenze hinaus beansprucht wurden. In den bereits fliessenden oder soeben zum Fliessen gebrachten Querschnittsteilen werden die so berechneten Spannungen über der Fliessspannung liegen. Nach der Bestimmung der zu den Dehnungen gehörenden wirklichen Spannungen [aus den $\sigma = f(\varepsilon, \vartheta)$ -Kurven] und der neuen E_s -Modul-Verteilung werden aus Gl. (15) wieder die Dehnungen berechnet, welche eine bessere Annäherung darstellen. Die Berechnung setzt sich somit aus den folgenden Schritten zusammen:

- 1. Bestimmung der Lage der neutralen Faser des unbelasteten Balkens, wobei A_0 und B_0 auf y = 0 bezogen werden.
- 2. Bestimmung von A_1 , B_1 und C_1 , auf die soeben berechnete Lage der neutralen Faser bezogen. Die numerische Integration wird man in den meisten Fällen getrennt von der Rand- bis zur neutralen Faser und von dieser bis zur anderen Randfaser durchführen müssen.
- 3. Belastung des Balkens mit dem gewünschten Biegemoment M.
- 4. Berechnung der Dehnungen $\varepsilon_{1, y^{1}}$, die durch *M* hervorgerufen werden (Gl. 15).

¹) Der erste Index bezeichnet die Ordnungszahl des Iterationsschrittes und der zweite den vertikalen Abstand der betrachteten Faser von der neutralen Faser.

- 5. Bestimmung der Spannungsverteilung $\sigma'_{1,y}$ des 1. Iterationsschrittes $\sigma'_{1,y} = \varepsilon_{1,y} \cdot E_{s^0,y}$. (Sie liefert in den fliessenden Querschnittsteilen grössere Werte als die Fliessspannungen.)
- 6. Bestimmung der wirklichen Spannungen $\sigma_{1, y}$ mit $\varepsilon_{1, y}$ aus den $\sigma = f(\varepsilon, \vartheta)$ -Kurven.
- 7. Berechnung der neuen E_s -Verteilung nach $E_{s^1, y} = \sigma_{1, y}/\varepsilon_{1, y}$.
- 8. Berechnung von A_2 , B_2 und C_2 .
- 9. Erneute Berechnung der Dehnungen $\varepsilon_{2,y}$ des mit M belasteten Balkens mit A_2 , B_2 und C_2 .
- 10. Bestimmung der Spannungsverteilung $\sigma'_{2,y} = E_{s1,y} \cdot \varepsilon_{2,y}$.
- 11. Berechnung der neuen E_s -Verteilung $E_{s^2, y} = \sigma_{2, y}/\varepsilon_{2, y}$ usw.

Die Iteration wird solange fortgesetzt, bis zwei nacheinander berechnete Spannungsverteilungen $\sigma_{i, y}$ und $\sigma_{(i+1), y}$ bzw. die Spannungsverteilungen $\sigma'_{(i+1), y}$ und $\sigma_{(i+1), y}$ sich nur noch im zulässigen Ausmass unterscheiden.

Während der Belastung auftretende Temperaturänderungen können berücksichtigt werden, indem die soeben beschriebene Berechnung mit mehreren, zweckmässig gewählten Biegemomenten durchgeführt und die Temperaturverteilung von Biegemoment zu Biegemoment sprunghaft geändert wird.

Sind die Spannungen von der Deformationsgeschwindigkeit $\dot{\epsilon}$ nicht unabhängig, so muss $\dot{\epsilon}$ vorerst angenommen werden. Nach der Durchführung der Berechnung kann dann die Richtigkeit der Annahme kontrolliert werden, indem man die Dehnungsdifferenzen durch die sich aus dem zeitlichen Ablauf der Belastung ergebenden Zeitdifferenzen dividiert.

$$\dot{\varepsilon}_{y} \simeq rac{\varepsilon_{M(i+1), y} - \varepsilon_{Mi, y}}{\tau_{M(i+1)} - \tau_{Mi}}$$

Die im gewählten Beispiel (Bild 5) mit M = 1700, 2200,2500 und 2800 cmkp Belastung berechneten Spannungs-

Tabelle 1. Verschiebung der Lage der neutralen Faser $R_{-\varrho}$, Bild 3, wenn die *E*-Modul-Verteilung einem Polynom *n*-ten Grades (Gl. [15a]) entspricht.

n	0	1	2	3	
R-q	0	h/6	h/4	3 <i>h</i> /10	

Bild 7. Die berechneten Spannungen in Abhängigkeit vom Biegemoment

verteilungen sind in Bild 7 dargestellt. Daraus geht hervor, dass die Lage der neutralen Faser sich infolge der ungleichmässigen Temperatur um 7,5 mm gegen die kältere Fläche hin verschiebt. Im Laufe der Berechnung ändert sich diese Verschiebung geringfügig (maximal 0,6 mm).

Zur Illustration der numerischen Berechnung sind im Anhang einige Iterationsschritte des Belastungsfalles M = 2500 cmkp angegeben. Die Schichtdicke, in der die Fliessspannung erreicht wurde, beträgt 5 mm auf der kälteren und 14 mm auf der wärmeren Seite, von der Randfaser aus gemessen.

Mit der skizzierten Methode kann natürlich auch die Plastifizierung von Balken berechnet werden, deren *E*-Modul über den Querschnitt konstant bleibt. Um die Spannungsverteilung über die Balkenlänge zu bestimmen, muss die Berechnung im Bereich von 0 bis M_{max} mit mehreren Biegemomenten durchgeführt werden, da *M* über die Balkenlänge in der Regel nicht konstant ist.

In der Praxis ist neben der Kenntnis der Spannungen häufig auch die der Durchbiegung erforderlich. Auf Grund der bereits abgeleiteten Gleichungen kann auch diese Frage beantwortet werden. Die Differentialgleichung der Durchbiegung lautet:

(16)
$$\frac{1}{\varrho(x)} \cong y'' = \frac{d(y')}{dx}$$

Auf der linken Seite der Gl. 16 steht nur der Biegeradius. Da wir $\varrho(x)$ aus Gl. 13 berechnen können, ist eine numerische oder planimetrische Integration der Gl. 16 ohne weiteres möglich. Es ergeben sich die folgenden Schritte:

$$\int_{0}^{l/2} \frac{dx}{\varrho(x)} = y' \text{ und } \int_{0}^{l/2} \left[\int_{0}^{l/2} \frac{dx}{\varrho(x)} \right] dx = y,$$

wobei aus Gründen der Symmetrie nur bis zur Balkenhälfte

Tabelle 2. Vorbereitende Berechnung zur Bestimmung der Durchbiegung

Μ	1/M	C - B^2/A	$\frac{C - B^2 / A}{M}$	B/A	ρ	1/ρ	
cmkp	1/cmkp	kp/cm ²	cm	cm	cm	1/cm	
0							
600	$1,666 \cdot 10^{-3}$	59,313 · 104	988,5	0,0147	988,5	1,012 · 10-3	
1200	$0,833 \cdot 10^{-3}$	59,313 · 10 ⁴	494,3	0,0147	494,3	2,023 · 10 ⁻³	
1700	$0,588 \cdot 10^{-3}$	59,313 · 10 ⁴	348,8	0,0147	348,8	2,867 · 10 ⁻³	
2200	$0,455 \cdot 10^{-3}$	$50,015 \cdot 10^{4}$	227,6	-0,0682	227,6	4,394 · 10 ⁻³	
2500	$0,400 \cdot 10^{-3}$	$40,499 \cdot 10^{4}$	162,0	-0,0398	162,0	6,173 · 10 ⁻³	
2800	$0,357 \cdot 10^{-3}$	31,405 · 10 ⁴	112,1	-0,0683	112,1	8,921 · 10 ⁻³	

integriert wurde. Es empfiehlt sich sowohl $1/\varrho(x)$ wie y' graphisch darzustellen, um die Durchführung der Integration zu erleichtern.

Um das Gesagte zu illustrieren, wurde das im Anhang angegebene Beispiel weitergeführt und auch die Durchbiegung berechnet. Dabei wurde angenommen, dass der Balken beidseitig eingespannt und gleichmässig mit p = 84 kp/cm belastet ist, ferner dass die Balkenlänge 200 mm beträgt. Der Berechnungsgang ist in Tabelle 2, das Reziproke des Biegeradius $1/\varrho(x)$ in Bild 8 angegeben. Bild 9 zeigt die Funktionen M(x) und $\varrho(x)$ und Bild 10 die durch die ein- bzw. zweifache Integration entstandenen Kurven. Im gewählten Beispiel beträgt die maximale Durchbiegung 0,79 mm.

Anhang

Berechnung der Lage der neutralen Faser

у	cm	+3	+2	+1	0	-1	2	—3		
θ	$^{\circ}\mathrm{C}$	800	866	933	1000	1066	1133	1200		
$10^{-4} E_{so} \text{ kp/cm}^2$										
		6,25	5,22	4,15	3,10	2,42	1,90	1,50		
$A_0 = 20,665 \cdot 10^4 \text{ kp/cm}; \ B_0/A_0 = +0,75 \text{ cm} \ B_0 = 15,495 \cdot 10^4 \text{ kp};$										

Berechnung von A1, B1, C1, auf die neutrale Faser bezogen

у	cm	+	-2,25	+1,12	25 0	-1,2	25 —2	2,5	-3,75
θ	°C		800	875	95	0 10	35	1117	1200
10-	$^{-4} E_{so} \mathrm{kp/c}$	cm²	6,25	5,1	3,8	30 2,7	71 2	2,02	1,50
A_1	= 20,616	· 10	⁴ kp		$B_1/A_1 =$	= 0,0147	cm		
B_1	= 0,302	· 10	4 kpc	m <i>l</i>	$B_1^2/A_1 =$	= 0,0044	3 · 10 ⁴	kpcm	12
C_1	= 59,32	· 10	4 kpci	m² ($C_1 - B_1^2$	$A_1 = 5$	9,313 ·	104 k	pcm ²

Die Balkenbelastung M = 2500 cmkp

Schweizerische Bauzeitung · 92. Jahrgang Heft 31 · 1. August 1974

Bild 9 (links). Biegemoment und Relänge

ziprokwert des Biegeradius in Abhängigkeit von der halben Balken-

Literatur

zweifache Integration ermittelter Ver-

lauf der Neigung und der Form der

neutralen Linie in Abhängigkeit von

Durch ein- bzw.

Bild 10 (rechts).

der halben Balkenlänge

- [1] H. Hencky: Z.A.M.M. 4 (1924), S. 323.
- A. Nàdai: Theory of Flow and Fracture of Solids. New York [2] 1950, McGraw-Hill.
- [3] Istvàn Szabò: Höhere Technische Mechanik, 5. Auflage. Berlin, Göttingen, Heidelberg 1963, Springer-Verlag.
- A. Muttnyanszky: Szilardsagtan (Festigkeitslehre), Budapest [4] 1956, Tankönyvkiadò.
- [5] K. A. Reckling: Plastizitätstheorie und ihre Anwendung auf Festigkeitsprobleme. Heidelberg, Berlin, New York 1967, Springer-Verlag.

Adresse des Verfassers: K. Fekete, dipl. Ing., Etzelstrasse 26, 8712 Stäfa.

Umschau

Ein Sechsschaufelpropeller, der 73 t wiegt und einen Durchmesser von 9,4 m hat, wurde von den Birkenhead Docks in Nordwestengland nach Bremen versandt. Der Propeller, der als der grösste gilt, der je hergestellt wurde, ist der erste von 10 Propellern, die für die 380000-BRT-Tankschiffe der Europaklasse, an denen gegenwärtig in Bremen gebaut wird, bestimmt sind. Die Propeller werden von Stone Manganese Marine konstruiert und gefertigt, und sie bestehen aus Nikelium, einer von der Firma eigens entwickelten Legierung. Sie werden als vollständige Einheiten gefertigt, was gleichzeitiges Giessen von 100 t geschmolzener Legierung mit 3 Pfannen bedingt. Die Herstellung des ersten Propellers erforderte zwanzig Wochen; dieser Zeitraum soll auf zwölf Wochen bei den noch zu liefernden Propellern verkürzt DK 62-253.6:656.612 werden.

+0,008 +0,006 +0.004 +0.002 e -0,002 120 100 20 40 60 x [mm] 80 0

1. Iterationsschritt

 $\varepsilon_1 = 2500 \cdot \frac{y - 0,0147}{50,012} \cdot 10^{-4}$ [Gl. (15)] 59 313

2,25 1,125 0 -1,25 -2,5 -3,75 y cm 95,46 48,04 0,62 -52,07 -104,7 -157,4 $10^4 \cdot \epsilon_1$ $\sigma'_1 = \varepsilon_1 \cdot E_{s0} \text{ kp/cm}^2 596,7 245,0 2,4 -141,1 -211,5 -236,1$ kp/cm² 420* 245,0 2,4 -141,1 -188,4 -175,0* σ1 $10^{-4} \cdot E_{s^1} =$

2,02 $\sigma_1/\epsilon_1 \text{ kp/cm}^2 4,40 5,1$ 3,8 2,711,11

2. Iterationsschritt

 $A_2 = 19,331 \cdot 10^4 \text{ kp}$ $B_2/A_2 = -0,0582 \text{ cm}$ $B_2^2/A_2 = 0.0655 \cdot 10^4 \,\mathrm{kpcm^2}$ $B_2 = -1,125 \cdot 10^4 \text{ kpcm}$ $C_2 = 50,621 \cdot 10^4 \,\mathrm{kpcm^2}$ $C_2 - B_2^2/A_2 = 50,556 \cdot 10^4 \,\mathrm{kpcm^2}$ $\epsilon_2 = 2500 \left[(y + 0.0582) / 50.556 \right] 10^{-4}$ 2,25 1,125 0 -1,25 -2,5 -3,75 v cm 114,1 58,5 2,88 -58,9 -120,7 -182,6 $10^4 \cdot \epsilon_2$ $\sigma'_2 = \varepsilon_2 \cdot E_{s1} \text{ kp/cm}^2$ 502,0 298,4 11,0 -159,6 -243,8 -202,7 kp/cm² 420* 298,4 11,0 -159,6 -232* -175* σ2 $10^{-4} \cdot E_{s^2} =$ $\sigma_2/\epsilon_2 \text{ kp/cm}^2$ 3,68 5,1 3,8 2,71 1,92 0.96

5. Iterationsschritt

 $A_5 = 18,013 \cdot 10^4 \text{ kp}$ $B_{\rm s}/A_{\rm s} = -0,0497~{\rm cm}$ $B_5^2/A_5 = 0.0446 \cdot 10^4 \text{ kpcm}^2$ $B_5 = -0.896 \cdot 10^4 \text{ kpcm}$ $C_5 = 41,828 \cdot 10^4 \text{ kpcm}^2$ $C_5 - B_5^2/A_5 = 41,783 \cdot 10^4 \text{ kpcm}^2$ 2,25 1,125 0 -1,25 -2,5 -3,75 y cm 137,6 70,28 2,97 -71,82 -146,6 -221,4 104 · 25 $\sigma'_5 = \varepsilon_5 \cdot E_{s4} \text{kp/cm}^2$ 436,2 358,4 11,3 -194,6 -243,3 -183,3 kp/cm² 420* 358,4 11,3 -194,6 -232* -175* σ5 $10^{-4} \cdot E_{s,5} =$ σs/εs kp/cm² 3,05 5,10 3,8 2,71 1,58 0,79 * Fliessspannung

Schweizerische Bauzeitung · 92. Jahrgang Heft 31 · 1. August 1974

755