Objekttyp:	Miscellaneous
ODICINITY D.	Miscellancous

Zeitschrift: Schweizerische Bauzeitung

Band (Jahr): 105/106 (1935)

Heft 13: Schweizer Mustermesse Basel, 30. März bis 9. April

PDF erstellt am: **20.05.2024**

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Abb. 2. Durchbrenn-Versuche der EMPA, Wirkung nach 8 h 35 min Brenndauer.

unmöglich, da die aus einem Bankgebäude ausströmenden Gas- und

Rauchschwaden die Nachbarschaft alarmieren würden. Die sich verflüssigenden und vergasenden Mineralien verbinden sich auch teilweise mit dem flüssigen Eisen und entwickeln dabei eine zusätzliche Wärme, sodass die Düse des Schweissbrenners rasch verzundert, verstopft oder gar abschmilzt, selbst oft dann noch, wenn sie gekühlt wird. - Nach 6 h 20 min war der Gasvorrat erschöpft und damit die erste Versuchsetappe beendet. An der tiefsten

Stelle, in der Gegend des Schlüsselloches, betrug der Aushub 11,5 cm. Damit war festgestellt, dass das Einbruchmaterial von rd. 400 kg zur Ausführung des Vorhabens ungenügend ist.

Die Arbeiten wurden nun fortgesetzt, um in einer zweiten Etappe die Zeit festzustellen, die notwendig ist, um eine armdicke Oeffnung in die Türe zu schneiden und das Schloss zu entfernen. Nach insgesamt 5 h 10 min eff. Brennzeit wurde auch der Schneidapparat Nr. 3 defekt. Der Versuchsausführende arbeitete in einer Asbestjacke, da die zahlreichen heftigen Ausbrüche der Mineralzellen flüssiges Metall ausspritzten. Nach total 8 h 35 min effektiver Brenndauer (beide Etappen zusammengerechnet) gelang es, das Schloss zu entfernen. Es war ein Loch von rd. 7,5 cm grösster Breite geschaffen worden (siehe Abb. 2). Der Versuchsausführende wollte nun das Riegelwerk betätigen, was ihm jedoch nicht gelang, da beim Aufschneiden der Schlosspartie die von aussen unsichtbare automatische Riegelsicherung funktioniert und damit das Riegelwerk vollständig unabhängig vom Schloss blockiert hatte.

Um den "Einbruch" nun wirklich erfolgreich zu gestalten, erwies es sich daher als unumgänglich, ein Mannloch von rund 45 cm ∅ in die Türe zu schneiden, damit der Mann in den Tresorraum hätte hineinkriechen können. Diese sehr zeitraubende und kostspielige Arbeit wurde nicht zu Ende geführt, sondern nach einer total aufgewendeten Zeit von 20 h (Ausführende 17 h, Hilfskraft 3 h) und einem Materialaushub von insgesamt 4,07 dm³ abgebrochen. Für ein Mannloch von 45 cm ∅ wäre ein Aushub von 27 dm³ Material notwendig gewesen, sodass für den Ausbruch des Ganzen (für einen einzelnen Einbrecher) rund 134 h oder 5 ½ Tage nötig gewesen wären. Das dafür notwendige Hilfsmaterial und Werkzeug würde ein Gewicht von rd. 4000 kg ausmachen, worunter etwa 36 Flaschen Sauerstoff und 14 Flaschen Acetylen-Dissous.

Anschliessend an obige Aufbrennversuche wurden an der Panzertüre noch zahlreiche Bohrversuche mit Rapidbohrern an verschiedenen Stellen vorgenommen, die jedoch im grossen Ganzen ebenfalls negative Resultate ergaben.

MITTEILUNGEN.

Eidg. Technische Hochschule. Die E.T.H. hat folgenden Herren die Doktorwürde verliehen: a) der technischen Wissenschaften: Jacob Dahl, dipl. Ing.-Chem. aus Sandvika (Norwegen) [Dissertation: Ueber das Bleichen von Sulfitzellstoff]; Curt F. Kollbrunner, dipl. Bauing. aus Zürich und Frauenfeld [Das Ausbeulen des auf Druck beanspruchten freistehenden Winkels]; Anton Német, dipl. Elektroing. aus Budapest [Untersuchung über Strukturänderung der Kristalle im elektrischen Feld]; Conrad Roth, dipl. Forsting. aus Kesswil (Thurgau) [Untersuchungen über den Wurzelbrand der Fichte]; b) der Naturwissenschaften: Werner H. Fischer, dipl. Naturwissenschafter aus Safenwil (Aargau) [Synthese des monocyclischen Diterpenalkohols 1-(β-Cyclo-geranyl)-geraniol]; Hans Waldmann, dipl. Naturwissenschafter aus Arbon (Thurgau) [Ueber die Konstitution der Abietinsäure].

WETTBEWERBE.

Bebauungsplan der Stadt Chur. Unter den seit mindestens 1. Januar 1933 in Chur niedergelassenen Fachleuten und den auswärts wohnenden Stadtbürgern eröffnet der Stadtrat einen Ideenwettbewerb für einen allgemeinen Bebauungsplan. Verlangt wird ein Plan 1:5000, ein Baulinienplan 1:500 für die Altstadt, vier Sonderdetailpläne 1:500 über Spezialaufgaben, wichtige Längs- und Querprofile 1:2000, 1:200, 1:100, Erläuterungsbericht. Zur Prämiierung von drei bis fünf Entwürfen stehen 11000 Fr., für Ankäufe 2000 Fr. zur Verfügung des Preisgerichts, dem angehören: Stadtrat Dr. F. Christoffel, die Architekten Prof. H. Bernoulli (Basel), N. Hartmann (St. Moritz) und K. Hippenmeier (Zürich) und Ing. C. Jegher (Zürich), sowie Ing. J. Danuser, Bauinspektor in Chur als Ersatzmann. Anfragetermin ist der 30. Mai, Einlieferungstermin der 1. Oktober 1935. Die Unterlagen sind gegen 60 Fr. Hinterlage womöglich bis zum 10. April vom Stadtbauamt Chur zu beziehen.

Für den Text-Teil verantwortlich die REDAKTION: CARL JEGHER, WERNER JEGHER, K. H. GROSSMANN. Znschriften: An die Redaktion der S B Z, Zürich, Dianastrasse 5 (Telephon 34507).

MITTEILUNGEN DER VEREINE.

S. I. A. Zürcher Ingenieur- und Architekten-Verein. Protokoll der 6. Sitzung, 23. Januar 1935.

Das Protokoll der 4. Sitzung wird genehmigt, die Umfrage nicht benützt. Es folgt das Referat von Direktor E. Gysel (Winterthur) über:

Moderne Triebwagen für Schienenverkehr.

Gründe und Bedingungen für die Entwicklung: Verkehrsrückgang, Automobilkonkurrenz, Vervollkommnung der Verbrennungskraftmotoren, Leichtstahl- und Leichtmetallbau, Schweisstechnik. Erst handelte es sich darum, mit Hilfe von Leichttriebwagen die Verkehrsmöglichkeiten auf Nebenbahnen zu verbessern, nachner auch für den schnellen Personenverkehr auf Hauptlinien Triebwagen zu schaffen (Reisezeit- und Transportkosten-Verminderung). Mit Schnelltriebwagenzügen weist die Eisenbahn die schnellste Verkehrsmöglichkeit auf, da sich auf der Schiene auf die Dauer und unabhängig von der Witterung höhere Geschwindigkeiten mit grösserer Sicherheit erzielen lassen als auf der Strasse.

Die Geschwindigkeiten der Leichttriebwagen haben die bei Dampfzügen üblichen maximalen von 100-120 km/h für die nämlichen Streckenverhältnisse beträchtlich überschritten. So sind der zwischen Hamburg und Berlin verkehrende fliegende Hamburger1), der auf der Strecke Paris-Deauville verkehrende Bugattiwagen²) und der Triebwagen der Union Pacific Railway³) bei Motorleistungen, die unter 1000 PS, also erheblich unter denen grosser Schnellzuglokomotiven liegen, imstande, mit 160—170 km/h zu fahren. Die Gewichtsreduktion ist für solche Leichtzüge von grösster Bedeutung, weil sie gestattet, mit kleinerer Antriebsleistung grössere Beschleunigungen und Geschwindigkeiten zu erzielen. Das Gewicht pro Sitzplatz beträgt bei solchen Triebwagen 200 bis 700 kg gegenüber mindestens 1000 kg beim Lokomotivzug. — Anwendung von Luftreifen (Michelin⁴). — Windschnittige Bauart. — Die Frage, ob Alleinfahrer oder Zugskompositionen oder untrennbare zwei- bis dreiteilige Wagenzüge muss durch die Betriebsverhältnisse gelöst werden.

Benzinmotoren von 100-200 PS bei Drehzahlen von 1000-3000 bilden die einfachste Kraftquelle (Feuersgefahr). Der Dieselmotor wurde für Triebwagen eigens zur hochtourigen und leistungsfähigen Antriebsmaschine entwickelt. Die Tourenzahlen betragen bis 1500, die Leistungen bereits 600-800 PS. Drehzahlregulierung bis auf ca. ¼ der maximalen, bei ungefähr gleichbleibendem Drehmoment ist möglich. Die Dampfmaschine wird mit einem automatisch wirkenden und vom Dampfmotor aus gesteuerten Dampferzeuger benützt, speziell in der Form der Doble-Dampfwagen⁵). Hochdruckdampf. Den vom Fahrdraht gespeisten Elektromotor verwendet man zum ersten Mal bei den für die schweizerischen Eisenbahnen im Bau befindlichen Leichttriebwagen. In verschiedenen Ländern sind Akkumulatorentriebwagen gebaut worden. Kraftübertragung: elektrisch, mechanisch oder hydraulisch. Bei der mechanischen ist die gewöhnlichste Form das Automobilgetriebe, für grössere Leistungen insbesondere das von der S. L. M. Winter-

^{1) &}quot;SBZ" Bd. 100, S. 58*. 2) Bd. 102, S. 74. 3) Bd. 104, S. 11.
4) "SBZ" Bd. 98, S. 109*, 241*; Bd. 99, S. 172; Bd. 100, S. 371; Bd. 101, S. 108; Bd. 102, S. 98*. 5) "SBZ" Bd. 104, S. 148.