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Electromagnetic corrections in hadron scattering,
with application to nN —> %N
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(28.11. 1978; rev. 18. V. 1978)

Abstract. A general dispersion relation method for calculating electromagnetic corrections to hadron
scattering is presented. An application is made to nN scattering, for which the electromagnetic corrections
to the S- and P-wave phase shifts and inelasticities in n~p elastic and charge exchange scattering are
calculated. For the P33 resonance the corrections obtained correspond to a width difference r4 + + — TA. at
— 5 MeV/c2 and a mass difference M4+» — Mà. at 1 MeV/c2. The inelasticity corrections are derived
directly from the unitarity relation, and are for n~p scattering mainly due to the «y-channel. The
contributions from bremsstrahlung are negligible, as has recently been demonstrated also for n +p scattering.

1. Introduction

It is well known that the nuclear amplitude FN, obtained from a hadron scattering
experiment after subtraction ofCoulomb scattering and Coulomb-nuclear interference
terms, still contains a trace of electromagnetic (e.m.) interactions. That is, FN differs
from what one would like to think of as the purely hadronic amplitude FH. The
general goal of the present paper is to determine the e.m. correction

3F=FN-FH (1.1)

applying quantum electrodynamics, but trying to use as few assumptions as possible
about the strong interaction.

In previous work on e.m. corrections [1-4] we defined FH to be the amplitude FN
in the limit of no e.m. interactions. However, without a combined theory for the
strong and e.m. interactions we have no prescription for taking this limit. This
definition therefore is almost empty; it merely serves to illustrate what we are after.

It seems reasonable to assume that FH obeys SU(2) and unitarity in the space of
pure hadronic states (i.e., states with no photons). We also assume that it obeys
crossing and is analytic with only the hadronic unitarity cuts. The problem is that we
have to specify the masses and coupling constants that appear in FH. These should
ideally be the physical masses and coupling constants in the limit of no e.m.
interactions, but again this limit cannot be taken. Instead we simply choose a particle mass
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for each iso-multiplet to represent the pure hadronic mass, and similarly for the
coupling constants. This means that the amplitude FH derived from (1.1) will not
strictly speaking be a pure hadronic amplitude but rather a standard amplitude with
simple analyticity and unitarity properties.

There is no experimental way of verifying the actual choice of masses and
coupling constants. Thus it is not possible to measure the individual corrections, but
only combinations of them in which the dependence on FH cancels to first order. To
find which combinations of corrections are measurable one has to form all the
combinations of measurable quantities that would be zero if SU(2) were exact. In nN
scattering we have, e.g.

Fn(n+p -^n+p)- FN(n-p - n~p) - J2 FN(n~p -» n°n), (1.2)

T(A° -» n-p)/F(A° -» n°n) - \, (1.3)

and
<5+(^33) - à~(P33), (1.4)

where <5+ and b~ are the P33 nuclear phase shifts derived from n+p and n~p scattering
respectively. With our assumption of SU(2) for FH these expressions are all given in
terms of combinations of corrections.

What we have said means that the ambiguity in the masses and coupling constants
to be used in FH is no obstacle to an experimental check of charge independence of
strong interactions.

From the analyticity and unitarity properties of FN and FH one can derive a
dispersion relation for <5Fas was first shown by Dashen and Frautschi [5]. The form
of the dispersion relation is not unique and in fact many different forms have been
used [1-6]. In the present paper we shall use the method of Ref. [4], suitably
extended to include the multichannel case. The extension of the method is described
in Section 2.

In Section 3 the method is applied to calculate the corrections to nN scattering.
The phase shift corrections are given by a kind of partial wave dispersion relation.
It is convenient to divide the contributions to the corrections into five categories,
namely, (i) Coulomb corrections due to Coulomb scattering of the external particles,
(ii) corrections due to the mass differences MK+ — Mn.andMp — Mn, (iii) corrections
due to differences between the n~pn, n°pp, and n°nn coupling constants, (iv)
contributions from the «y-channel in n~p scattering, and (v) short range contributions.

The terms (i)-(iv) contain dispersion integrals over the physical cut and the long
range part of the left-hand cut. They are essentially given in terms of measurable
quantities and can be calculated directly. Our results for (i) are roughly in agreement
with Bugg's results [7, 8] obtained from a relativistic potential model. The problem
of determining the mass difference effects from potential theory has been discussed
in detail by Oades and Rasche, Rasche and Woolcock, and by Zimmermann [9, 10].
Numerical results for the corrections were obtained by Zimmermann from a phase
shift analysis, where the corrections were determined so as to give charge independent
phase shifts. The corrections obtained by this method are sort of effective corrections
and it is not clear (to us) how they should be compared to our results.

The differences between the various nNN coupling constants are unknown, and
hence also the contributions (iii). In Figures 2-4 we show what the contributions
would be for coupling constant differences of the order 1%. The ny contribution (iv)
can be calculated directly from the known photoproduction amplitudes.
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There remains, however, the term (v) coming from the short range part of the
left-hand cut integral. We are not able to determine or even estimate this term, which
is of course a serious drawback of our method. However, the short range contribution
to the dispersion integral is supposed to vary slowly in the low and medium energy
region, i.e., up to energies well above the P33 resonance. This means that the energy
dependence of the short range contribution is more or less known.

In Section 3.3 we derive the expression for (1.3) and give its value in the absence
of short range effects. In Section 3.4 we discuss the differences in mass and width of
the A+ + and A° resonances.

The inelasticity corrections can be derived directly from the unitarity equation.
They are therefore not subject to uncertainty due to short range e.m. effects or to
mass and coupling constant ambiguities. The inelasticity correction to n+p scattering
is due to bremsstrahlung and was calculated in Ref. [4], where we found very small
values. In n~p scattering the main contribution comes from the «y-channel and is
calculated from the known photoproduction amplitudes. We also estimate the
bremsstrahlung contribution and find it negligible in the considered energy range
(cf. Section 3.1).

Our e.m. corrections might be particularly useful in the type of data analysis
where analyticity and unitarity are imposed as constraints on the scattering amplitude.
In such an analysis the data should be corrected not only for Coulomb scattering and
Coulomb-nuclear interference but also for the e.m. corrections (1.1). (A detailed
discussion ofhow to do this is given in Ref. [11].) This will ensure that the corrected data
are consistent with the simple analyticity and unitarity properties assumed for the

pure hadronic amplitude.
Since our corrections do not include all short range e.m. effects one cannot expect

the output of the analysis to be a charge independent amplitude. One must therefore
in the analysis distinguish between the isospin 3/2 amplitudes in n+p and n~~p

scattering.
With this method it is obviously not possible to verify charge independence.

However, it should be noticed that the difference between the two amplitudes must
have a specific energy dependence in order to be consistent with charge independence,
namely that corresponding to smooth (short range) contributions to the dispersion
integrals.

2. General method

We consider the two-body reactions

Alt + Bß^Av + Bv, (p,v=l,...,N), (2.1)

where A, B are hadrons, and assume that no other purely hadronic channels are
important. (There may in addition be radiative channels such as hadron(s) +
photon(s).) In the outline of the method we assume for simplicity A, B to be spinless.
The S-matrix describing (2.1) is denoted by ^CHA, where C and H indicate Coulomb
and hadronic, and X is the photon mass.

If there are charged particles in the channels p or v, the matrix element («S'CHA)^V is

zero in the limit X —* 0. This is because an accelerated charged particle always emits
zero mass photons. Therefore there is no purely hadronic scattering in the zero mass
limit. The /l-dependence of SCHk is for small X given by the simple form
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OW„v 0(1) exp (-L„ In X), (2.2)

where L^ is a known function of the Mandelstam variables s, t, u (see Appendix A).
This enables us to form a finite A-independent S-matrix SCH by the construction

(SCH)^ lim/)MV(5CHA)MV, (2.3)

where D^ is a suitably chosen function containing the factor exp (L^ In X). The
precise definition of D^ is given in Appendix A.

We define a Coulomb «S-matrix Scx by

Sc, Anô(œ) + liqll2fCÀq112, (2.4)

wherey^ is the Coulomb amplitude, defined as the sum ofall Feynman graphs where
only photons are exchanged. Also, q diag (qt,..., qN), where q is the cm.
momentum in the p-channel. Analogous to (2.3) we define a finite Coulomb S-matrix
Sc by

(Sc\v lim 2>MV(ScAv (2.5)
A-»0

The definition of D given in Appendix A looks rather complicated but as
argued in Refs. [4] and [2] it is nevertheless almost canonical. With this definition
the amplitude

f=Jiq-ll2iScH-Sc)q-112 (2.6)

has a number ofuseful properties [4]. It obeys crossing, and it has the same analytic
structure as assumed for the pure hadronic amplitude except for the unitarity cuts
coming from intermediate states of the type hadron(s) + photon(s). (We shall call
these states radiative states and their unitarity cuts radiative cuts.) The graphs with
intermediate states ofphotons only have explicitly been removed by the construction
of/. Due to mass splittings within SU(2) multiplets the hadronic cuts in/are usually
shifted a little compared to the corresponding cuts in the pure hadronic amplitude.
At the thresholds in the s-, t-, and w-channels there may be essential singularities due
to the accumulation of Coulomb bound or antibound state poles. However, / is
finite at the thresholds on the physical sheet and it obeys simple fixed s and t dispersion
relations. Another consequence ofour choice ofD^ is that the inelasticity corrections
due to bremsstrahlung become small in the low and medium energy region. Furthermore

the introduction of e.m. form factors in D^ implies that the phase shift corrections

approach zero more rapidly with increasing energy. The reason for this is that
form factors tend to reduce the short range e.m. effects.

2.1. Coulomb phase shifts

We assume for simplicity that Scx is diagonal, which is anyway the usual case.
The definition (above the corresponding threshold) of the p-channel Coulomb phase
shift 2Zlft is based on the partial wave projection of (Sc)^;1)

') For the partial wave projection of a quantity/we use the symbol (/),, / being the orbital angular
momentum. In many cases where the meaning should be clear the label / is omitted.
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(Sc)mi [DJs, t 0)| exp (2i2ZtJ. (2.7)

It follows from equations (2.4) and (2.7) that to order a,

US) (f</W + 2,,„)A7„ (2.8)

where /^ is the one-photon exchange amplitude and (—^) is the phase of Z>w (cf.
Appendix A). For point charges, E, is in the non-relativistic limit equal to ol — a0,
where

a, arg r(l + / + iy), (2.9)

and y is the Coulomb parameter

y Z1Z2oc/v, (2.10)

Zj and Z2 being the charges of Aß, Bß, and v being the lab relative velocity.

2.2. Fhe nuclear S-matrix

From the finite S-matrices SCH and Sc we define a nuclear S-matrix 5N by

(Sch), (^(SnMSc),1'2. (2.11)

This definition is consistent with the usual definition of a nuclear S-matrix (cf. equation

(1.21) of Ref. [12]). It ensures that SN is symmetric.
From the S-matrices we form the reduced partial wave amplitudes

FN ~Q-ll2iiSN)l- 1)0"1/2, (2.12)

F q-l(f),q-' (Sc)}l2FN(Sc)l'2, (2.13)

^h ^Oh1/2((Sh)ì-DOh1/2. • (2.14)

where SH is the pure hadronic S-matrix and Q, QH are diagonal matrices with

ß„ - €l+1' iQnl - (fe¥,+1. (2.15)

qß, (q^)^ being the cm. momenta in the p-channel.
For q^ we have the kinematic relation

Asq2ß(s) (s - (mA + mB)2)(s - (mA - mB)2), (2.16)

where mA, mB are the masses of A Bß. The same relation gives qH. Ideally, mA, mB
should then be the masses of A Bß in the limit of no e.m. interactions. As discussed
in the introduction, however, these masses are unknown. For each isospin multiplet
we shall therefore choose a mass to represent the pure hadronic mass. Our e.m.
corrections will then be determined relative to these standard masses.

2.3. Dispersion relation for the e.m. correction

As stated in the introduction, our problem is to determine the e.m. correction
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SF FN — FH. We shall see that an equation for OF can be obtained by the use of
unitarity and analyticity.

Since/with a few exceptions has the same analytic structure as assumed for the
pure hadronic amplitude, it follows that the reduced partial wave amplitude F has the
same analytic structure as FH. In the s-plane, FH has the so-called physical (or right-
hand) cut singularity s0 < s < oo, where s0 is the lowest threshold of all the channels.
There is also a left-hand cut due to particle exchange in the t- and »-channels and this
cut can have a quite complicated structure [13].

On the physical cut the unitarity equation for FH has the simple form

lmF-1 -QHP, (2.17)

where P is the projection onto the set of open channels. In the next section we shall
see that unitarity also gives an explicit expression for ImF"1 on the physical cut.

To first order,

Im F"1 - Im F«1 -Im [_F^\F - F^F»1]. (2.18)

Using the N/D representation

FH J/~9i-1 (2.19)

we can write (2.18) as

Im Jf -^(ImF-1 - ImFû1)^, s0 < s < oo, (2.20)

where

Jf 2T(F - FH)3>. (2.21)

In deriving (2.20) we have used the facts that FH is symmetric and Jf is real on the
physical cut [5].

The function Jtif has the same analytic structure as F. Therefore it obeys a dispersion

relation of the form

2ni l.h.c. s — S

.f.
nJsc

A*(,v+1r-im*v+) (2_22)

where the first integral is over the left-hand cut (l.h.c.) and the second is over the
physical cut. From (2.20) we see that unitarity gives Im Jf on the physical cut. This
determines the physical cut integral in (2.22). In many cases one can also determine
the long range part of the l.h.c. integral. This means that the unknown part of JP(s)
is only the short (and medium) range part of the l.h.c. integral. This part may be
assumed to be small or at least to have very little structure in the physical region.

By (2.12)-(2.14), (1.1), and (2.21) we have to first order

Jf @TcêJf + JfT(€<2) + 9T OF®, (2.23)

where

(6 s (Sc)l>2 - 1. (2.24)

The matrix <€ is known to order a from the one-photon exchange amplitude and the
factors D Therefore, knowing Jdf, one can finally solve (2.23) for OF.
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2.4. Fhe X-independent unitarity relation

We shall now see how unitarity gives Im F~1 on the physical cut.
In analogy with (2.4) we define an amplitude / corresponding to the S-matrix

^cha • The unitarity relation for/can symbolically be written as

Im/ fqPf + S^Pß + S'PhS, (2.25)

S being the suitably normalized .S-matrix. Again P is the projection onto the open
hadronic channels, and Ps is the projection onto the open bremsstrahlung channels

AK + BK + photons,

where the photons in the overall cm. system have a total energy less than E. This
energy is chosen such that the soft photon approximation can be used for these
photons. The projection Ph is onto the open states of hard photon bremsstrahlung
and any other possible radiative states. (An example of the latter is the «y-channel in
n~p scattering.) The hard photon term S^PhS is infrared convergent to order a.

Using the soft photon approximation one can write (2.25) more explicitly as
(cf. Ref. [2], Section 7 for details)

Im/„W ?1 '2E\A'^ + A'KV

ÂW)qKfKM)[ — deo' + h.p., (2.26)

where h.p. is shorthand for the hard photon term. As usual co' (0', cp') and co

(6, 0) give the cm. directions of the intermediate and final state particles and 6" is the
angle between these directions. Also,

A'„ -ReLKV(0'), A'Kll -ReLK)l(d"), and AßV -ReL,v(ö),
(2.27)

where Lßy is given in Appendix A.
By (2.4) and (2.6) we have

4 (Uv+/A. (2.28)

The phase t/^v, defined by

/)„ |Z>Jexp(-/^v), (2.29)

depends only on s, and (cf. Appendix A)

<A„v iOA„, + <Aw). (2.30)

The phase i// is zero below the threshold of the p-channel.
We now insert (2.8), (2.28), and (2.29) into (2.26) and find to order a the following

unitarity relation for the reduced partial waves :

Im (/>**) (î</W + 2,,„)CFh)„A„ + CFhWw + 2,,V)PVV

+ (F^QPF)^ pw™-*»»> + h.p., (2.31)

where P^ is the partial wave projection of

i<WX'\£>J-%vi2E/X)A">- (2-32)



Vol. 51, 1978 Electromagnetic corrections in hadron scattering, with application to nN -> nN 591

Using (2.30) we find that the infrared divergent phases \j/ cancel to first order, and
(2.31) finally gives a A-independent unitarity relation for F;

Im F F^Qcp-'PF + £(PFH + FjjFZ, + sd. (2.33)

Here the matrices cp and Z, are diagonal with diagonal elements \Dßß(t 0)| and
S, M respectively, j/ is the absorption matrix

j^ <f tßPFH + FHQP^- Im # + q-'ÇS^P^q-1, (2.34)

where <f is the partial wave projection of the matrix with entries

lim(^v) H/hV
y^cpli2 /2FV-

_ j'
|^v(*. 0| V *

(2.35)

/H being the pure hadronic scattering amplitude. In (2.35), the infrared divergence
due to soft photon emission is cancelled by the factor |Z>^V |. The ê terms in (2.34)
describe the remaining absorptive effect of soft photon emission.

From (2.33) we derive in the usual way an explicit expression for Im F"1.
Together with (2.17) and (2.20) this gives

Im Jf ^PT(Q(p-1 - Qn)PAr + S>%P.,P
+ JP^PQ + &j*9, (2.36)

from which one evaluates the physical cut integral in (2.22).
From (2.13) and (2.33) it follows that the open channel part of SN is given by the

simple relation

S£SU + AQ^sdQ1'2 I. (2.37)

This is the analogue of equation (3.29) in Ref. [4].

2.5. Fhe effective range equation

From the expression for Im F-1 one can form the AT-matrix

K-i =F-i _i lm F~\s' +
—TTi r- * ' (-2.38)

s (s — s)

which has no right-hand cut to order a. Near the thresholds higher order terms are
important. One can improve the threshold behaviour of K by replacing F by (pF(p,
where

?-ao+?r- <2-39)

The matrix y is diagonal, y being the Coulomb parameter of the p-channel. For this
one may use the non-relativistic form (2.10), the relativistic form (A.4), or iL, where L
is the function in equation (A.3) of Appendix A.

If the Coulomb interactions are attractive one must add the term

InïQy coth (ny) \\ 1 + (-) (2.40)
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on the right of (2.38) in order to compensate the poles coming from the Coulomb
bound state zeros in F (see Refs. [1], [4] and [14] for details).

3. Application to nN scattering

We shall now apply the general methods of Section 2 to n+p scattering and n~p
elastic and charge exchange scattering.

For n+p scattering there is only one nN channel and we write the nN part of
>SN as

ne2is, (3.1)

where ô and n are the nuclear phase shift and inelasticity. The e.m. corrections to ô

and n are by definition

A ô - <5H, (3.2a)

fj Ih - n> (3-2b)

where <5H and nH are the pure hadronic phase shift and inelasticity.
For n~p scattering there are two nN channels, 7i~p and n°n. The charge basis

{|7t~p>, |7r°n>} is transformed into the isospin basis {|/ j>, |/ §>} by the matrix

_L/W2 » Ì
7A 1 y/V o-3)

In the isospin basis the nN part of 5N is written as

meW+»>) nie2& Y (3-4)

with

ie _ 2 V2(r,13 + /A13), (3.5)

where ô', rf (i 1, 3) are the (real) isospin i/2 nuclear phase shift and inelasticity, and
n13 and A13 are (real) mixing parameters.

The nN part of the pure hadronic ^-matrix SH is assumed to be diagonal in the
isospin basis and is written as

0 nle2^)' (16)

where the / f component is the same as for n+p scattering, as required by our
assumption of SU(2).

We define the phase shift corrections Aj, A3 by

^ 4-!A!, (3.7a)

<53 <5â-iA3, (3.7b)

and the inelasticity corrections f\l, fj3 by

ni nn-n\ 0'= i,3). (3.8)

The mixing parameters n13, A13 are also to be considered as e.m. corrections.
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In Ref. [11] we give the detailed expressions for the differential and total cross
sections and the polarization in terms of the parameters in (3.1) and (3.4).

3.1. Inelasticity corrections

In the energy region where the nN channels are the only open hadronic channels
it follows from (2.37) and (3.4) that to first order in a

(-J* ~S~» "*f-'(„7"") " «""0" • <">

from which n1,n3, and n13 can be determined. For n+p scattering the same equation
holds with only 1 — n2 on the left.

For n~p scattering the main term in the absorption matrix sd comes from the
«¦y-channel. A derivation based on (2.34) and (3.9) gives for total angular momentum

i.
2 -

inn + niuVij 3^2 qyq{l(l + l^M'^M^ + (I ± 1)(/ + 1 ± l)\E>>2Eftl)

(i,j= 1,3), (3.10)

J i±h

where nx and n3 are given by ni f^/2 nu, and qy, q are the cm. momenta of the ny
and nN systems. The electric multipole amplitudes are

EH2 4 iE\V - 3F<°>), Efi2 Vf £g>, (3.11)

and similarly for the magnetic ones [15]. Equation (3.10) holds approximately also
for n'n < 1, i.e., above the inelastic threshold. Table 1 gives the ny inelasticity corrections

calculated from the multipole amplitudes of Moorhouse et al. [16].
In addition there is the absorption due to bremsstrahlung. The present

experimental results [17] on nN bremsstrahlung (obtained at pion lab kinetic energies
FL 260, 294, and 298 MeV) agree very well with the soft photon approximation for
photon energies up to about § of the maximum photon cm. energy Fmax. We therefore

Table 1

The ny-channel contribution to the n~p inelasticity corrections

•Sl/2 p °3/2

q/p Ï1 13 ^13 ni Vi fl3 fii li lu
0.8 171) 6 11 0.2 0.4 0.3 0.7 4 2

1.2 26 9 16 i 2 1 3 49 10

1.4 28 10 18 l 2 2 4 89 16

1.6 30 10 19 2 2 2 5 113 20
1.8 31 11 20 2 3 3 6 91 20
2.0 32 12 21 3 3 3 7 61 18

2.5 31 14 22 4 3 3 9 20 13

A All numbers are to be multiplied by 10 4.



594 B. Tromborg, S. Waldenstrom and I. 0verbe H. P. A.

estimate the bremsstrahlung contribution to fj1,fj3, and n13 by just using the (f-terms
in the absorption matrix with the cut off energy E §Fmax, ignoring the contributions
from photons of higher energy. The results of such a calculation for the S- and P-
waves are shown in Table 2. The corrections are seen to be negligible in all cases.

Table 2

Bremsstrahlung contribution to the n'p inelasticity corrections

^1/2 °l/2 °3/2

o/p "h */3 fl3 »?1 li fl3 Vl ^3 In
0.8
1.2
1.4

-0.21)
-0.7
-1.4

-0.2
-0.7
-1.1

0.1

-0.2
-0.8

-0.1 "

-0.1
0

0

-0.1
0

-0.1
-0.1

0

-0.1
-0.5
-1.3

-0.1
-1.6
-3.6

0
0.1

0.2

1.6
1.8

2.0

-1.4
-0.5

0.6

-0.9
-0.3

0.1

-0.8
-0.2
-0.1

0.1
0.3
0.5

0

0.1
0.1

0.1
0.2
0.1

-2.0
-1.6
-1.0

-3.2
-0.1

2.2

0.1

-0.1
-0.5

2.5 3.7 2.5 -0.8 8.9 0 -2.5 1.1 4.7 -2.4

') All numbers are to be multiplied by 10 *.

For n+p scattering the absorption is due only to bremsstrahlung, and here a
similar calculation leads to the same conclusion (cf. Table 1 in Ref. [4]).

3.2. Phase shift corrections

To derive OF from (2.23) one needs a fairly complete N/D model for the full
hadronic partial wave amplitude FH (including the inelastic channels) even if one is

interested only in the nN scattering part of OF. There exists, however, a slightly
different method which involves only the known nN amplitude [4]. Instead of using
(2.21) we may define a function JfR by

JfK A~1I2(FR - FR)A~112, (3.12)

where FR, F„ are now only the reduced part (i.e., the nN part) of F, FH.
For n~p scattering, A is in the isospin basis given by

with
~ls f00 Ö

A,- exp
2s C°

71 Jsc 0=1,3), (3.14)
So s(s -s)

where s0 (M + p)2, M and p being the proton and charged pion masses. On the
physical cut,

A,.= |A,.|exp(2i<5£), (j 1,3). (3.15)

For n+p scattering we use A A3.
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The two functions Jt and #?R would coincide if there were no inelastic hadronic
channels. Also, Jr*R has the same analytic structure as FR. In analogy with (2.23) we
have to order a

A^rAi/2 («- - iß-1 <5ß)F„ + FH(^ - Iß"1 «0 + f^7# (3.16)

The quantities on the right are here the reduced part of the corresponding quantities
in Section 2.

In order to specify ÖQ Q — QH we now choose to use the proton and charged
pion masses M and p for the pure hadronic masses. Thus ÔQ 0 for n+p scattering,
while for n~p

oQ (q2ol+1 - q2-l+1)P0, (3.17)

where P0 is the projection on the n°n state, and q_, q0 are the momenta of the n~p
and n°n systems. Clearly qH q_.

It follows from equations (3.15), (3.4), and (3.6) that on the physical cut the
expression (l/li)A~ll2(SN - S'H)A"1/2 is identical to

/-f^i + O'^i y/2A13-in13

N 3 |A1A3|1'2

V2A13-^13 -jr?HA3 + (i/l)fj3 f (3.18a)

\K^\112 |A3|

for n~p scattering. For n+p it is simply

07„A + (i/l)fj)
|A,

(3.18b)

Combining this with (3.16) one sees that the corrections A are connected with Re 3VR,
while Im JPr is independent of A. Thus the corrections may be found by the use of a
dispersion relation for JfR (cf. Appendix B for detailed expressions).

This method was used in Ref. [4] to determine the phase shift corrections to the
n+p S- and P-waves and we have also used it to determine the 5-wave corrections and
A3(/7,2) for n~p scattering. Our results for the latter are given in Table 3.

The method leads to the most reliable results in the cases where b\ goes to a
negative value at high energies. This follows from the asymptotic behaviour of
| A; | which is [18]

|A,|-> const, x |j|-2'à(«»m (319)

as \s\ —> oo. In the dispersion relation for JfR the behaviour (3.19) gives rise to an
enhancement (suppression) of the high energy contributions when £{,(00) is positive
(negative). This is most serious for the left-hand cut, where we are able to calculate
only the long range part of the dispersion integral. Ignoring the short range contributions

may be dangerous in cases where these are enhanced by the A function.
The problem with the asymptotic behaviour (3.19) arises only if we insist on

using a single channel method. If a phase shift is large and positive at higher energies,
this is generally due to strongly attractive forces in one or more of the related inelastic
channels. This is most easily taken into account by using the multichannel N/D
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Table 3

Phase shift corrections (in degrees) to n~p scattering

¦^1/2 P,2 p-"3/2

g/p À, A3 A13 A3 A, A3 A13

0.5 -0.31 0.52 0.06 0.11 0.02 -0.74 0.11
0.8 -0.21 0.35 0.06 0.21 0.05 -1.48 0.15
1.0 -0.15 0.30 0.07 0.28 0.08 -2.13 0.15

1.2 -0.10 0.27 0.08 0.34 0.11 -2.87 0.12
1.3 -0.07 0.26 0.09 0.37 0.13 -3.09 0.09
1.4 -0.05 0.25 0.10 0.39 0.14 -2.82 0.05

1.5 -0.02 0.24 0.11 0.41 0.16 -1.93 -0.02
1.6 0 0.24 0.12 0.43 0.17 -0.73 -0.08
1.8 0.03 0.22 0.15 0.47 0.20 0.87 -0.16

2.0 0.05 0.21 0.17 0.52 0.23 1.23 -0.18
2.5 0.14 0.18 0.24 0.63 0.36 0.83 -0.16

method outlined in Section 2. This method should be safer to use than the one
discussed above, e.g. for the Plt and F33 waves both of which have large and positive
phase shifts at high energies.

For Pn we have at present no N/D model that gives a satisfactory fit to the
observed phase shift and inelasticity. Therefore the N/D method cannot be used to get
reliable estimates for A1(P1/2) and A13(F1/2). However, a calculation using the single
channel equation (B.5) gives very small values for these corrections, at least in the
region of the F33 resonance, so we believe they can simply be ignored (see also the
results in Ref. [8]).

For the F33 partial wave Ball et al. [19] have constructed a two-channel N/D
model that reproduces both the phase shift and inelasticity with good accuracy. In
this model the first channel is the nN state and the second is a P-wave state of masses
M and Ap. The latter should be considered as an effective channel, simulating the
combined effects of the nA, pN, KT, and maybe other channels. It is therefore not
clear what charges one should use for the second channel. We take the simplest
possibility and assume the particles to be neutral.

Using this two-channel N/D model in (2.22) and (2.23) we have recalculated the
correction to the F33 phase shift in n+p scattering. The result is given in Table 4
together with the n+p corrections obtained from the single channel method (cf. Ref.
[4]). The two methods are seen to give very similar results for the F33 correction. At
low energies (q <; p) the dominant terms are identical in the two cases. At higher
energies, however, corresponding terms come out very different with the two methods,
but they add up to give total corrections that are surprisingly close. This result seems
to indicate that the total correction is to some extent insensitive to what N/D model is
used, as long as it reproduces the measured nN partial wave.

For the P3J2 partial wave in n~p scattering we use a 'mixture' of the two methods.
Our ^-matrix is here of the form

Aj 0

0 D3
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Table 4
The correction to the n+p P33 phase shift, obtained from equations (2.22) and (2.23) using the two-channel
N/D model of Ball et al. (column 6). For comparison and completeness we have included (in columns 3-5)
the n+p corrections obtained [4] from equations (B.5) and (B.8) in Appendix B.

N/D
q/p rt[MeV] A(S1/2) A(/\/2) A(P3/2) ACP3/2)

0.5 22.11) 0.10 0.01 -0.07 -0.07
0.8 53.7 0.09 0.02 -0.23 -0.23
1.0 80.7 0.10 0.04 -0.47 -0.47

1.2 111.8 0.10 0.05 -0.90 -0.90
1.3 128.7 0.11 0.06 -1.18 -1.19
1.4 146.4 0.11 0.07 -1.39 -1.42

1.5 164.9 0.12 0.08 -1.36 -1.42
1.6 184.3 0.12 0.09 -1.10 -1.13
1.8 225.2 0.13 0.10 -0.31 -0.36

2.0 269.1 0.13 0.12 0.13 0.07
2.5 391.1 0.14 0.15 0.44 0.32

') TL is the pion lab kinetic energy

where D3 is the two-channel S>-matrix of Ball et al. [19]. Our results for the corrections

are given in Table 3.

We shall now discuss the various contributions to the corrections.

Nucléon exchange. The only left-hand cut term we include in the dispersion
relation for 2f? (or jPk) is the one that arises from nucléon exchange in the «-channel
of the nN system. The integral is over the cut singularity (M — p)2 < s < M2 + Ip2
ofJf(s) in the s-plane and the discontinuity of Jf(s) across the cut is derived from the
M-channel absorptive parts of the graphs (a)-(d) in Figure 1. The absorptive part of
(d) is obtained from the photoproduction amplitudes, and for these we use the Born
approximation [4, 20].

To obtain the absorptive parts ofthe graphs (a)-(c) we have to know the nNN
coupling constants Gn_pn, GKopp and Gnonn. These coupling constants are finite and

A-independent and are defined by

G lim DnNNG, (3.20)
A->0

where G is the value of the relevant nNN vertex function when all three external
particles are on the mass shell. Clearly G„0„„ G„0„„ ¦ The definition (3.20) is analogous
to our definition of the finite S-matrix SŒ (cf- equation (2.3)).

We take the nucléon exchange graph that contributes to F» to be the same as that
for n+p scattering (Fig. la) except that Gn-pn is replaced by Gn-pn. This means that
for n~p scattering where nucléon exchange appears in the reactions 7t~p —? n°n and
n°n-> 7i°«(cf.Fig. lb, lc) there will be contributions to A1;A3, and A13 proportional
to respectively

3G2_p„ + G2onn - 4G„„PP Gn.pn, (3.21 a)

2^1-pn - 2^Xn ~ G^ppGn-pn, (3.21b)
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N
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N

Tl

(d)
Figure 1

The nucléon exchange graphs which contribute to the dispersion integral for Jf or JVR.

and

2G„ow,GII-pn 2G2 (3.21c)

from the short nucléon exchange cut (M — p2/M)2 < s < M2J- lp2^Unfortunately

very little [21] is known about the differences between Gn_pn, G„0pp, and

Gno„„. We are therefore not able to calculate these contributions. However, to get an
idea about the possible size we have calculated the contributions for the P3/2y/aves
taking arbitrarily the factors (3.21) to be 0.02G2, with G2/4rc ^14. (For Gn9m

Gnopp the factors (3.21) are all approximately equal to G2_p„ — G20„„.) The results
are the dotted curves 'g' in Figures 2-4. (These numbers are, of course, not included
in our total corrections, given in Table 3.) We note that with the present N/D model
the left-hand cut contribution to A3 is strongly suppressed compared to the
corresponding contribution in the single channel method (cf. Fig. 12 in Ref. [2]).

Corrections due to mass differences. In n~p scattering there is also a contribution
due to the mass differences of the external particles and of the intermediate nucléons
in the various nucléon exchange graphs (cf. Fig. la-lc). It was stated in Ref. [3] that
the pion mass difference has no influence on this contribution. This is correct at very
high energies but in the resonance region the main effect is due to the pion mass
difference.

The most important mass difference effect comes, however, from the physical
cut terms involving ÔQ in (2.23) or (3.16).

Our result for the sum of these two effects is shown for the F3/2 case as curve
'm.d.' in Figures 2-4. Notice that the mass difference contribution dominates the
structure ofthe total F33 correction.

Fhe ny contribution. The «y-channel in n~p scattering gives rise to a radiative
M2 < s < oo in #e(s) and J^R(s). The corresponding absorptive part of JPR comes
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1.0
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3.02.50.5 1.0 1.5 2.0

q/|i
Figure 2

The contributions to A3(P3/2) in n'p scattering. They are (c) the Coulomb correction, (m.d.) the mass
difference contribution, and (ny) the contribution from the «y-channel. The circles show the results by
Bugg [8]. The dotted curve (g) illustrates the effect of coupling constant differences.

0.5°r
m.d

-0.5

0.5 1.5 2.0 2.510

q/n
Figure 3

The contributions to A13 (P3/2). Same notation as in Figure 2. The ny contribution is negligible and is not
shown.



600 B. Tromborg, S. Waldenstrom and I. 0verbo H. P. A.

-
md

0.10° -

0

'•••...

0.10°

i I i

...g

I

0.5 1.0 1.5 20 25

q/n
Figure 4

The contributions to A^Pj^). Same notation as in Figure 2.

from the n.. term in equation (B.8). On the physical cut we use the values of n.. given
in Table 1. In the unphysical region we derive Im JfR from the extrapolated photo-
production amplitudes. The Born terms in the photoproduction amplitudes give rise
to an endpoint singularity in JfR at s M2. We refer to Refs. [2] and [20] for a
discussion of how to deal with this singularity in a dispersion relation.

The discontinuity of ffl(s) due to the rcy-channel is derived from the absorption
matrix term in (2.36). In the matrix sd we have ignored the terms involving the
amplitude for the effective channel going to ny. This is not consistent with analyticity
and unitarity, but probably is a good approximation below the threshold of the
effective channel.

The contribution from the «y-channel to the F3/2 corrections are shown as curve
py in Figures 2-4.

Fhe Coulomb correction. The contribution from the terms containing the matrix
<€ in (2.23) and (3.16) is called the Coulomb correction. In this we also include the
left-hand cut contribution from graph (d) of Figure 1 and the term coming from the
difference between G and G. The corrections to n+p are therefore entirely Coulomb
corrections. Apart from the left-hand cut terms they are equal to the corresponding
corrections A3 to n~p scattering.

The Coulomb corrections mostly arise from the Coulomb scattering of the
external particles. It is therefore not surprising that our results for these agree
qualitatively with the corrections obtained from potential theory (cf. Section HD in
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Ref. [4] for a discussion of the relation between the potential theory and dispersion
relation methods). Thus the circles in Figures 2-4, showing Bugg's results [8]
obtained from a relativistic potential model, are seen to be close to our Coulomb
corrections (curve 'c').

Short range contributions. As already mentioned, we are not able to determine
the short range part of the left-hand cut integrals in the dispersion relations for Jf or
PfK. Furthermore, we have not taken into account the short range contribution due
to e.m. effects in the inelastic channels. These effects would contribute to the high
energy part of the physical cut integral.

Although the short range contribution to Re JfR is unknown, it clearly is slowly
varying in the resonance region. It therefore follows from equation (B.5) that the
structure of the contribution is determined by the factor ^2'+1|AiAJ-|1/2. For F33
this factor is to a good approximation proportional to sin2 ô^. The short range
contributions to the F33 corrections therefore are of the form

h(s) sin2 ol, (3.22)

where h(s) varies slowly in the resonance region. The same conclusion follows from
an argument based on the multi-channel method.

3.3. Fhe branching ratio T(A° —> n p)/F(A° —? n°n)

Ifwe for a moment ignore the «y-channel we find that exp (2iö3) is an eigenvalue
to the matrix (3.4) with corresponding eigenvector

(y2A13/sin(«53-^), 1). (3.23)

Consider now the F3/2 wave. At the resonance position sr, given by ö3(sr) \n, we
identify the eigenstate (3.23) with the A0 particle. Thus in the charge basis,

|A°> -4 (1 - V2 a)\n-py + X (a + J2)\n°ny, (3.24)

where

V2 A
a= - 13

Sr
3 cos ö1

This gives the branching ratio

a -0.001. (3.25)

r(A0->7t-p)
r(A° -> n°n)

1 - V2«
V2 +

1-1.004. (3.26)2

If the ny-channel is included, the eigenphase of the enlarged S-matrix becomes
<53 + \r\3 cot <53 and for s sr the corresponding eigenvector is

(a, 1, V6^ ElY, J2q~q M?2), (3.27)

where the last two components are the electric and magnetic components of the
«y-channel. We notice that the introduction of the wy-channel does not change the
branching ratio (3.26) except through A13. However, the ny contribution to A13 is

negligible.
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If we for A13 use only the first term on the right of equation (B.5), we find

r(A°-»"'/»>
Ä I (VV e« * 1.0.998. (3.28)

r(A°^7r°«) 2VW
for s sr. This approximation is essentially the penetration model result [22], as

can be seen by noting that

e2ny — 1

e* oc — (3.29)
Iny

in the non-relativistic limit (cf. equations (B.4), (A.ll), and (2.10)).

3.4. Masses and widths ofthe A+ + and A° resonances

We define the mass MA + + (MA.) of the A++(A°) resonance to be the value of
W(= tJs) for which the nuclear F33 phase shift in n+p(n~p) scattering passes through
\n. The widths F are determined from the nuclear phase shift by

dô_

dW ~ (3.30)

The differences in masses and widths are therefore given by

MA+ + -MA.~ -±r(A+lA3), (3.31)

rA++-rA.^ _ir2^(A + iA3), (3.32)

where the right-hand sides are evaluated at the resonance, A and — jA3 being the
corrections to the F33 phase shifts in n+p and n~p scattering (cf. equations (3.2a) and
(3.7b)). (Like the definitions of mass and width themselves these definitions of the
shifts are not very unique.)

From our results for A and A3 we find (in MeV/c2) 2)

MA++ - MA„ ~ 1.0, (3.33)

rA++ -TÄ. ä -5.2. (3.34)

As discussed in Section 3.2 we have not included the short range contributions,
which will give an additional term of the form (3.22) in the expression for A + jA3.
The corresponding contributions to the shifts in width and mass will have a ratio
roughly equal to

Fdh_
hdW

(3.35)

Since h is supposed to be slowly varying it follows that the short range contribution
should mainly influence the mass shift.

2) In the same way as for the branching ratio we reproduce essentially the penetration model result by
using only the first term on the right of eq. (B.5). This gives no mass difference and

rA.. - rA. at -fr[R + l - (qjq0p^ at -2.5.
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The shifts (3.31) and (3.32) are also influenced by the differences between the
various nNN coupling constants. The arbitrary choice of 0.02 G2 for the combination
(3.21b) (cf. curve 'g' in Figure 2) gives shifts of only —0.08 and 0.15 MeV/c2 in the
mass and width. This shows that in the present N/D model calculation the coupling
constant differences have to be large in order to cause serious errors.

A comparison between (3.33)—(3.34) and experiments must wait until a new
phase shift analysis has been carried out. The nuclear phase shifts obtained in the
analysis of Carter et al. were reported to give [8] (see also Ref. [23])

MA++ - MA„ -1.4 ± 0.4, (3.36)

rA++ - rA, -10.3 ± 1.3. (3.37)

However, this result cannot be compared directly with (3.33)-(3.34) because the
analysis was not carried out in a way consistent with our corrections. A scheme for a
practical data analysis consistent with our corrections is presented in Ref. [11].

Although the results of such an analysis may turn out to differ from the values
ofCarter et al., it may be of interest to study how short range e.m. effects couldproduce
results like (3.36) and (3.37). By (3.35), this would require

F dh
^ 2

hdW
i.e., \h\ would have to increase in the resonance region. Also, the contributions would
have to be of the same size as those already encountered. We expect the left-hand
contribution to h(W) due to e.m. modification of the driving forces in nN —* nN to
be numerically decreasing with energy, unless cancellation effects are active. If
results like (3.36) and (3.37) persist in future analyses, it therefore seems that one will
have to look for further e.m. effects in the inelastic channels.
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Appendix A

The function DMV that we use in equation (2.3) to give an infrared convergent
S-matrix is defined [24] as the product

D„ FI (*Wy (AD

over all pairs ofthe four external particles Ali,BfL,Av,By. The same definition also
applies to the function D used in (3.20); in this case i,j run over all pairs ofthe three
particles of the vertex.

Let qu and stJ be the cm. momentum and energy squared in the channel where
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the particles i andj are both incoming or both outgoing. We shall refer to this as the
//-channel.

To define (fl^Lwe need the two functions (Y^)^ and (L^Yij which we write as
Y and L for short. These functions depend only on stJ and are real analytic in the

jy-plane cut along (sq)^ < stj < oo, where (s0)y (m{ + mA)2, mt and m^ being the
masses of /and/

On the cut
1 ro r/v\rw

(A.2)

(A.3)

Im Y(si}.+) -y..
-4qtP X - X

and

lm L(stJ+) -y..,
where yi} is the Coulomb parameter

Sji — rr

-..yi2 - Zf 'v.: (A.4)

Z;, Z. being the charges in the //'-channel and v.- being the relativistic lab relative
velocity. The Ft, F, are the charge form factors.

Equation (A.2) shows that Im Y is equal to the S-wave phase shift derived from
the singular part of the one-photon exchange amplitude in the //'-channel

fix 2Mm FiiUjiFjitij) + non-singular terms, (A.5)

t{j being the momentum transfer in the *y-channel.
For point charges (F; F, 1)

Im Y -yl} In (lql}/X), (s0)l} < s(J < oo, (A.6)

which is the usual infrared Coulomb phase. For realistic form factors the integral

--4«ij2 X ~ A

is convergent in the limit qu —> go, so in that case Im Y and Im L are proportional
for large st,.

The real part of Y is given by the dispersion relation

Y(stJ)
'u - fa-»jt lm Y(s'+) ds'

(so), ,s' - (mt - m})2s' - stJ

and a similar relation gives L(stj It follows that for realistic form factors Y and L
become proportional for large \stJ |.

The function L can be calculated explicitly and one finds [2, 4]

a I, z — -v/l — z +¦Z,Z,-{\ + /-^_Vftln

--**.:-h-£i\-
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where

sin2 e z S»~ (m> - mJ)2

Am^mj

As in Ref. [4] we define

where C is Euler's constant (C 0.5772). Since

2
exp (LC) (nL)
W^L) =Ï--FT + °{L) (A10)

this factor is only important near the threshold s{, cs (^0);j, where L is large. Near
and above this threshold we have [4]

e2«ytj _ i

i(Z)^2cc-^r' (AJ1)

which is related to the Coulomb penetration factor. It is the behaviour (A.ll) that
ensures that the amplitude f (cf. equation (2.6)) is finite on the physical sheet in a
neighbourhood of(s0)ij. (If ZtZj < 0 there are weak Coulomb bound state poles for
ytJ i(n + l),(n= 1,2,...).)

By equations (A.l), (A.9), and (A. 10) we have to order a

D„ exp(-y;,), (A. 12)

where

r„v E iY.Yij- (A.13)
i<j

It also follows that as X —> 0

Z>„v 0(l)exp(Z-„vlnA), (A.14)

where

K E (^v)y (A.15)
i<l

For point charges the function Y^ has a simple origin. As discussed in Refs. [2]
and [4] it arises from the sum of all Feynman graphs where a photon is exchanged
between two external legs of the hadronic amplitude (/H)„v • If (fn)^ is taken to be
constant in the integration region of the Feynman integrals, the sum is simply

It is clear from the definition of DßV that it obeys crossing and is real analytic in
the cut s-, t-, and M-planes.

Appendix B

From (2.7) we see that the term

<€ (Sc))'2 - 1, (B.l)
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which appears in (3.16), is given by

% \R + iTt (B.l)
for n+p scattering, and by

V -(i-R + iTt)P_ (B.3)

for n~p scattering, where P_ 1 — P0 is the projection on the n~p state, and jR is

given by

e,R

A= -Up + c, 1-3-

\Dn+p<n+p(t 0)\. (B.4)

The explicit expressions for the corrections A to n~p scattering are obtained by
combining (3.18) with (3.16);

S'h
- 2T,BtJ + q2J+1 |A. A//2 Re H„, (B.5)

where ij 11, 13, and 33 give A1; A13, and A3 respectively.3) Here

Atj sin (Ô'H + #H) + ifoL - nid sin <& - %),

BtJ sin ô'H sin S{, + i(n'H + tfc - 2) cos (S'H - ^), (B.6)

Cll 2' C13 — L c33 2,

and H,- is defined by

^ l_/-2Hn y/2H13\
3\j2Hl3 -H33

(B.7)

The real part of Htj is given by the dispersion relation (2.22), where the physical cut
integral is determined from

q^A^lmH, -j* + c,[l - (^J'"]}^
+ T^j - \ctJ\V\p (B.8)

where n^ are the inelasticity corrections given in (3.10).

Equations (B.5) and (B.8) also hold for n+p scattering if we put i j 3,

•^r #33 > and c33 0 (cf- equations (3.51) and (3.52) in Ref. [4]).
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