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Abstract. In most approaches to numerical relativity it is very difficult to determine global properties
of spacetimes since typically only finite regions of spacetime are evaluated. But global properties are
of major interest for many fields of general relativity, e. g. cosmic censorship (existence and location of
event horizons) and gravitational radiation (whose definition and determination requires knowledge
of the geometry at null infinity). In this talk I will briefly outline an approach using conformai

techniques to calculate global properties. The advantages of this method are demonstrated using
two examples, the determination of event horizons and the decay of radiation. The calculations have

been performed with a spherically symmetric spacetime using a conformai scalar field as radiation
and matter model.

1 Introduction and description of model

General relativity as a theory for the structure of spacetime not only predicts local deviations
from theories on a fixed background, like Newtonian physics and electrodynamics, but also
dramatic changes of the structure in the large. Small deviations from the theories on fixed
backgrounds can be determined by comparing certain quantities in finite volumes of space-
time — in the following called local properties. Unfortunately for numerical relativity, the

answer to many questions concerning the structure of spacetime requires knowledge over an
infinite volume of spacetime — in the following called global properties. Typical global
properties are issues related to cosmic censorship like existence and location of event horizons.
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Furthermore due to the nonlinearity of general relativity the definition and determination
of gravitational radiation requires knowledge about infinitely far points (null infinity) and
therefore gravitational radiation is also a global property.
In this talk I present results from a numerical approach which allows one to calculate global
properties. The approach makes use of conformai techniques. More details can be found in
[6].

The numerical solution of a relativistic initial value problem without symmetries is still an
unsolved problem, the difficulties range from the correct treatment of boundaries to issues

concerning the "right" choice of coordinates and last but not least the required, but not available,

computational resources. In spherically symmetric spacetimes the choice of coordinates
is relatively easy and the required computational resources are provided by a small workstation.

As spherically symmetric spacetimes do not admit gravitational radiation a conformai
scalar field has been chosen as matter and radiation model. The field equations are:

(l--AK$)Rab (k(Vo0)(Vò0)-Ì/c0VoV^-Ìka«6(VC^)(Vc0)) (1.1)

àó-^4, 0. (1.2)
6

Equation (1.1) is equivalent to Gab K,Tab with

fab (Va4>)(Vbé.) - ±4VaVb~4> A \ j>2Rab - \ ~9ab ((V*>)(Vc0) + l-pRJ (1.3)

The ~ labels quantities of the physical spacetime.
Equation (1.2) is form invariant under the rescalings gab Q29ab an(^ 0 ^_1 ^> the field
equation Or/> 0 for the massless Klein-Gordon scalar field is not. This was the reason for
not choosing the massless Klein-Gordon scalar field with its simpler field equation in physical
spacetime. In [5] it has been shown that the initial value problems for these matter models
are mathematically equivalent.
As coordinates (t, r, $, ip) (u + v, v — u, $, <p) with double null coordinates (u, v) have been
chosen. (i9, tp) coordinatize the orbit of the symmetry group and are omitted further on. It
can be shown that this coordinate system covers the whole domain of dependence of the initial
value surface [4].

2 Description of formalism

To define asymptotical flatness and to describe radiation Penrose developed a formalism in
which the physical spacetime (M,gab) is mapped to the interior of an "unphysical" spacetime
(M,gab) with boundary I, see e. g. [3]. This construction is very similar to the mapping of
the plane of complex numbers to the Riemannian sphere.
Asymptotical flatness is by definition equivalent to the existence of the rescaling gab — Q2gab

together with requirements on the properties of fi. 1 can be identified with infinitely far
points and is a null hypersurface consisting of two disjoint parts I~ and 1+. Null geodesies
start at I~ and end at I+, therefore I is also called null infinity. Under certain conditions 1
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can be extended to include three more points, i°, i~ and i+, representing the endpoint of all
spacelike geodesies (spacelike infinity i°) and the start and the endpoint of timelike geodesies
(past and future timelike infinity).
In the used initial value formulation I give data on a hypersurface E which intersects 1+ and
is spacelike with respect to gab- E corresponds to an everywhere spacelike hypersurface E in
M which approaches asymptotically an outgoing null cone. This kind of initial value problem
is called a hyperboloidal initial value problem. Actually one would like to solve a "normal"
initial value problem, but a normal spacelike hypersurface ends at i° and for spacetimes with
non-vanishing mass there are unsolved technical problems in treating i°.
Asymptotical flatness of the initial data is reflected in regularity conditions on the data at the
intersection of E with I+ (represented by a point in (t,r) coordinates). E can be extended

beyond the intersection with J+, but the choice of data does not influence the evolution on
the part M corresponding to M and is therefore irrelevant for the physics. For that reason
the physics does not depend on the treatment of the outer grid boundary if the numerical
scheme converges and the outer boundary is beyond I.
Although Penrose's formalism provides an elegant language to formulate and describe global
properties of spacetimes, it is not well suited for initial value problems. The field equations
(1.1) and (1.2) describing the physical spacetime transform under the rescaling to a set of
equations which are singular for O 0. Hence they cannot easily be used to solve an initial

value problem in the unphysical spacetime. Friedrich found a new system of equations,
which are regular on I by interpreting the rescaled Einstein equation as an equation for the

rescaling factor and adding new equations derived from the Bianchi identity. This system
is equivalent to the Einstein equation and a symmetric hyperbolic subsystem of evolution
equations can be extracted [2, 5].

In the coordinates used and under the assumption of spherical symmetry the evolution equations

are also semilinear. The characteristics of the resulting first order system have slope
±1 and 0.

3 Numerical calculations

For both examples the data are chosen such that (i) f> has compact support on E and E
and (ii) the scalar field would purely ingoing1 for n 0 (a condition on ff). The setting
k 0 corresponds to a scalar field on Minkowski background. For k — 0 all the wave moves
towards the center, passes the center, moves outward and finally crosses T (the thick line in
figure 1, "I" marks the region with non-vanishing (p). The fact that the wave moves over I
is also phrased "escapes to null infinity".
For a nonlinear model, obtained by setting k 1, a non-vanishing scalar field in region
II and III is expected for the same initial setting of (p and f>. This is a pure backscattering
effect. As the coordinate system is obtained by reference to the characteristics of the equation
(double null coordinates and semilinearity), this comparison of linear and nonlinear models
is well defined. Region IVa and IVb have vanishing scalar field also in the nonlinear case.

Hhe direction is of course reverted when the wave goes through the center
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The location of T is known by analytic considerations, it is the ingoing null line starting at
the point with fi 0 on the initial value surface. The comparison with the calculated 0 0

contour provides an error estimate.
For weak initial data the spacetime evolved from the initial data possesses the same conformai
structure as Minkowski space, T intersects the axis and this intersection point has the required
properties for regular future timelike infinity (infinite proper time for an observer in physical
space time, correct behaviour of 0 and its derivatives). For strong initial data this intersection
point is "hidden behind a singularity".

3.1 Location of singularities and event horizons

Figure 2 shows the upper corner of a supercritical spacetime. The amplitude of the initial
scalar field pulse was 0.55, the critical parameter, where a singularity develops for the first
time, is in the interval ]0.48,0.49[. The dashed thick line is I and the thick line is the
calculated singularity. The singularity is spacelike near the center and approaches a null
line near I. A point of the grid is called singular if one or more of the following occur: (i)
at least one variable of the system becomes too large, (ii) the principal part of the system
of equations becomes singular or (iii) the values depend on points already marked singular.
Due to the third condition and the fact that the scheme is run at a Courant factor of 1

it is possible to distinguish spacelike from timelike/nullike singularities. If in addition to
the numerical singularity spacetime invariants like RabcdRabcd blow up approaching the the
numerical singularity, as in this case, the numerical singularity can be identified with a real
singularity.
In all cases calculated the physical singularity was spacelike and covered by an apparent
horizon (thin line in figure 2, the null expansion of the outgoing null direction vanishes here).
The intersection of T with the singularity is a singular future timelike infinity (i+), for an
observer moving into i+ an infinite amount of proper time passes. The outgoing null line
ending at i+ is the event horizon of the spacetime (dotted line). As null lines have slope ±1,
the determination of the event horizon is straightforward.
The results found agree with those derived by Christodoulou [1].
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3.2 Decay of radiation

Figure 3 shows the radiation field <j> on I in region II plotted against the proper time r of
an observer at I for an initial amplitude of 0.40 well below the critical value but already a
model with strong gravitational fields. The expression for the proper time does not contain
terms singular at T like O-1 although it includes the limit f —> oo for fixed t — f.
Region II starts at a proper time of » 101,5 « 30, the time scale of the collapse event. The
calculation delivered reliable results up to a proper time of order 108. Results are called
reliable if the value for a given gridsize is on the plot indistinguishable from the value got
from a Richardson extrapolation obtained from half and quarter gridsize calculations. As
the proper time distance of the grid points decreases on the approach to I the dots in figure
3 become sparse. The very last points before i+ become inaccurate in the defined sense and

are not shown in figure 3. The plot shows a clear logarithmic fall-off (p ~ (r — To)0-34. I do

not know of any other method which allows one to follow the evolution for such a long time
scale.
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