Covariant double-null dynamics

Autor(en): Israel, W.
Objekttyp: Article
Zeitschrift: Helvetica Physica Acta

Band (Jahr): 69 (1996)
Heft 3

PDF erstellt am:
28.04.2024

Persistenter Link: https://doi.org/10.5169/seals-116945

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Covariant double-null dynamics

By W. Israel

Canadian Institute for Advanced Research Cosmology Program, Avadh Bhatia Physics Laboratory, Edmonton, Canada T6G 2J1

Abstract

This is an introduction to the basics of a ($2+2$)-imbedding formalism, adapted to a double foliation of spacetime by a net of two intersecting families of lightlike hypersurfaces. It yields a simple and geometrically transparent decomposition of the Einstein equations, and has a variety of applications, e.g., to the characteristic initial-value problem (analytical and numerical), the singularity structure of Cauchy horizons and definitions of "quasi-local mass."

1 Introduction

I should like to present a brief advertisement on behalf of a $(2+2)$ lightlike decomposition of the Einstein equations recently developed by our group [1]. Formalisms of this kind becomes useful when the physics singles out particular lightlike hypersurfaces or directions, as in the characteristic initial-value problem, the dynamics of horizons, gravitational radiation, Planck-energy collisions and light-cone quantization.

A number of such formalisms have emerged over the years [2], beginning with the famous 1973 paper of Geroch, Held and Penrose [3]. Basically, all have the same content, but they look very different. The distinctive feature of our version is hat it is two-dimensionally covariant and thus very compact, geometrically transparent and relatively easy to use-at least, we find it so. We hope it will play a role in promoting this versatile technique (which has never really caught on with relativists) into an everyday working tool.

2 ADM (3+1)-decomposition: a brief recap

To set the stage and ease us into the notation, I shall briefly remind you of the elements of the familiar $(3+1)$-decomposition of Arnowitt, Deser and Misner [4].

This is based on a foliation by spacelike hypersurfaces $t=$ const, with parametric equations

$$
x^{\alpha}=x^{\alpha}\left(\xi^{a}, t\right)
$$

Greek indices run from 1 to 4 , and latin indices (in this section only) from 1 to 3 .
The tangential base vectors $e_{(a)}$ associated with the intrinsic co-ordinates ξ^{a} are defined by $e_{(a)}^{\alpha}=\partial x^{\alpha} / \partial \xi^{a}$. The intrinsic metric and extrinsic curvature of a hypersurface $t=$ const. are then given by

$$
g_{a b}=e_{(a)} \cdot e_{(b)} \quad K_{a b}=\left(\nabla_{\alpha} n_{\beta}\right) e_{(a)}^{\alpha} e_{(b)}^{\beta}
$$

where n^{α} is the unit timelike normal:

$$
n \cdot n \equiv g_{\alpha \beta} n^{\alpha} n^{\beta}=-1
$$

The 4 -vector $\partial x^{\alpha} / \partial t$ can be decomposed into tangential and normal parts;

$$
\partial x^{\alpha} / \partial t=s^{a} e_{(a)}^{\alpha}+N n^{\alpha}
$$

thus defining the lapse function N and the shift vectors s^{a} (more conventionally written as N^{a}).

It follows that an arbitrary four-dimensional displacement $d x^{\alpha}$ decomposes as

$$
d x^{\alpha}=e_{(a)}^{\alpha}\left(d \xi^{a}+s^{a} d t\right)+N n^{\alpha} d t
$$

and the 4 -metric as

$$
d s^{2}=g_{\alpha \beta} d x^{\alpha} d x^{\beta}=g_{a b}\left(d \xi^{a}+s^{a} d t\right)\left(d \xi^{b}+s^{b} d t\right)-N^{2} d t^{2}
$$

The standard ADM formulae [4] now express the four-dimensional Einstein tensor components $G_{\alpha \beta}$ in terms of the intrinsic geometry $\left(g_{a b},{ }^{(3)} R_{a b}\right)$ of the hypersurfaces, the extrinsic curvature $K_{a b}$ and its normal derivative, and the lapse and shift.

However, this formalism folds in the limit where the hypersurfaces become lightlike. Because n^{α} is now a tangential vector, $K_{a b}$ no longer provides extrinsic information, and the intrinsic metric $g_{a b}$ becomes degenerate.

To deal with the lightlike case, one must fall back to a foliation of co-dimension two. I shall next sketch briefly how this works.

$3(2+2)$ lightlike decomposition: basic metric notions

We consider a double foliation of spacetime by a net of two intersecting families of lightlike hypersurfaces Σ^{0} (with equations $u^{0}=$ const.) and Σ^{1} (given by $u^{1}=$ const.), where $u^{A}\left(x^{\alpha}\right)(A, B, \ldots,=0,1 ; \alpha, \beta, \ldots,=1, \ldots, 4)$ are a given pair of scalar fields over spacetime, with lightlike gradients:

$$
\nabla u^{A} \cdot \nabla u^{B}=e^{-\lambda} \eta^{A B},
$$

and where the matrix

$$
\eta^{A B}=\eta_{A B}=\left(\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

will be used to raise and lower upper-case Latin indices, and $\lambda\left(x^{\alpha}\right)$ is a scalar function. The generators $\ell_{\alpha}^{(A)}$ of Σ^{A} are conveniently defined as

$$
\ell^{(A)}=e^{\lambda} \nabla u^{A} .
$$

Two hypersurfaces Σ^{0} and Σ^{1} intersect in a 2 -surface S, with parametric equations

$$
x^{\alpha}=x^{\alpha}\left(u^{A}, \theta^{a}\right) \quad(a, b, \ldots=2,3)
$$

where $\left(\theta^{2}, \theta^{3}\right)$ are intrinsic co-ordinates of S. Both generators $\ell^{(A)}$ are orthogonal to S.
Holonomic basis vectors $e_{(a)}$ and the intrinsic metric of S may now be defined:

$$
e_{(a)}^{\alpha}=\frac{\partial x^{\alpha}}{\partial \theta^{a}}, \quad g_{a b}=e_{(a)} \cdot e_{(b)} .
$$

The matrix $g_{a b}$ and its inverse $g^{a b}$ are used to lower and raise lower-case Latin indices, so that $e^{(a)}=g^{a b} e_{(b)}$ are the dual basis vectors tangent to S.

Two-dimensional shift vectors s_{A}^{a} are defined by

$$
s_{A}^{a}=\frac{\partial x^{\alpha}}{\partial u^{A}} e_{\alpha}^{(a)}=-\ell_{(A)}^{\alpha} \frac{\partial \theta^{a}}{\partial x^{\alpha}} .
$$

As in the Arnowitt-Deser-Misner formalism, the shift vector s_{A}^{a} measures how much one has to deviate from the normal direction $\ell_{(A)}$ to connect points on different 2 -surfaces having the same intrinsic co-ordinates θ^{a}. An infinitesimal four-dimensional displacement $d x^{\alpha}$ can be decomposed as

$$
d x^{\alpha}=\ell_{(A)}^{\alpha} d u^{A}+e_{(a)}^{\alpha}\left(d \theta^{a}+s_{A}^{a} d u^{A}\right) .
$$

Together with the completeness relation

$$
g_{\alpha \beta}=e^{-\lambda} \eta_{A B} \ell_{\alpha}^{(A)} \ell_{\beta}^{(B)}+g_{a b} e_{\alpha}^{(a)} e_{\beta}^{(b)}
$$

for the basis $\left(\ell^{(A)}, e_{(a)}\right)$, this implies that the spacetime metric is decomposable as

$$
g_{\alpha \beta} d x^{\alpha} d x^{\beta}=e^{\lambda} \eta_{A B} d u^{A} d u^{B}+g_{a b}\left(d \theta^{a}+s_{A}^{a} d u^{A}\right)\left(d \theta^{b}+s_{B}^{b} d u^{B}\right)
$$

4 Covariant geometrical objects embodying first derivatives of metric

Associated with its two normals $\ell_{(A)}$, a 2 -surface S has two extrinsic curvatures defined by

$$
K_{A a b}=\left(\nabla_{\beta} \ell_{(A) \alpha}\right) e_{(a)}^{\alpha} e_{(b)}^{\beta}
$$

and easily shown to be symmetric in a, b. (Since we are free to rescale the null vectors $\ell_{(A)}$, a certain scale-arbitrariness is inherent in this definition.)

A further basic geometrical property of the double foliation is given by the Lie bracket of $\ell_{(0)}$ and $\ell_{(1)}$. One finds

$$
\begin{equation*}
\left[\ell_{(B)}, \ell_{(A)}\right]=\epsilon_{A B} \omega^{a} e_{(a)} \tag{4.1}
\end{equation*}
$$

where

$$
\omega^{a}=\epsilon^{A B}\left(\partial_{B} s_{A}^{a}-s_{B}^{b} s_{A ; b}^{a}\right) .
$$

The semi-colon indicates two-dimensional covariant differentiation associated with metric $g_{a b}$, and $\epsilon_{A B}$ is the two-dimensional permutation symbol.

The geometrical significance of the "twist" ω^{a} can be read off from (4.1): the curves tangent to the generators $\ell_{(0)}, \ell_{(1)}$ mesh together to form 2-surfaces (orthogonal to the surfaces S) if and only if $\omega^{a}=0$. In this case, it would be consistent to allow the coordinates θ^{a} to be dragged along both sets of generators, and thus to gauge both shift vectors to zero.

I shall denote by D_{A} the two-dimensionally invariant operator associated with differentiation along the normal direction $\ell_{(A)}$. Acting on any two-dimensional geometrical object $X_{b \ldots}^{a \ldots}, D_{A}$ is formally defined by

$$
D_{A} X_{b \ldots}^{a \ldots}=\left(\partial_{A}-\mathcal{L}_{s_{A}^{d}}\right) X_{b \ldots}^{a \ldots} .
$$

Here, ∂_{A} is the partial derivative with respect to u^{A} and $\mathcal{L}_{s_{A}^{d}}$ the Lie derivative with respect to the 2 -vector s_{A}^{d}. As an example:

$$
D_{A} g_{a b}=\partial_{A} g_{a b}-2 s_{A(a ; b)}=2 K_{A a b}
$$

Geometrically, $D_{A} X_{b \ldots}^{a \ldots}$ is the projection onto S of the Lie derivative with respect to $\ell_{(A)}$ of the equivalent tangential 4-tensor $X_{\beta \ldots}^{\alpha \ldots}$.

The objects $K_{A a b}, \omega^{a}$ and D_{A} are all simple projections onto S of four-dimensional geometrical objects. Consequently, they transform very simply under two-dimensional co-ordinate transformations. Under the arbitrary reparametrization

$$
\begin{equation*}
\theta^{a} \rightarrow \theta^{a^{\prime}}=f^{a}\left(\theta^{b}, u^{A}\right) \tag{4.2}
\end{equation*}
$$

(which leaves u^{A} and hence the surfaces Σ^{A} and S unchanged), ω_{a} and $K_{A a b}$ transform cogrediently with

$$
e_{(a)} \rightarrow e_{(a)}^{\prime}=e_{(b)} \partial \theta^{b} / \partial \theta^{a^{\prime}}
$$

By contrast, the shift vectors s_{A}^{a} undergo a more complicated gauge-like transformation, arising from the u-dependence in (4.2).

5 Ricci tensor

This geometrical groundwork is already sufficient to allow me to display the simple form that the Ricci components take in this formalism. (Notation for the tetrad components is typified by $R_{a A}=R_{\alpha \beta} e_{(a)}^{\alpha} \ell_{(A)}^{\beta}$.)

The results are

$$
\begin{aligned}
{ }^{(4)} R_{a b}= & \frac{1}{2}{ }^{(2)} R g_{a b}-e^{-\lambda}\left(D_{A}+K_{A}\right) K_{a b}^{A} \\
& +2 e^{-\lambda} K_{A(a}^{d} K_{b) d}^{A}-\frac{1}{2} e^{-2 \lambda} \omega_{a} \omega_{b}-\lambda_{; a b}-\frac{1}{2} \lambda_{, a} \lambda_{, b} \\
R_{A B}=- & D_{(A} K_{B)}-K_{A a b} K_{B}^{a b}+K_{(A} D_{B)} \lambda \\
& -\frac{1}{2} \eta_{A B}\left[\left(D^{E}+K^{E}\right) D_{E} \lambda-e^{-\lambda} \omega^{a} \omega_{a}+\left(e^{\lambda}\right)^{; a}{ }_{a}\right] \\
R_{A a}= & K_{A a ; b}^{b}-\partial_{a} K_{A}-\frac{1}{2} \partial_{a} D_{A} \lambda+\frac{1}{2} K_{A} \partial_{a} \lambda \\
& +\frac{1}{2} \epsilon_{A B} e^{-\lambda}\left[\left(D^{B}+K^{B}\right) \omega_{a}-\omega_{a} D^{B} \lambda\right]
\end{aligned}
$$

where ${ }^{(2)} R$ is the curvature scalar associated with the 2 -metric $g_{a b}$, and $K_{A} \equiv K_{A a}^{a}$.
The economy and geometrical transparency of these formulae are self-evident. In particular, the shift vectors, which are largely an artefact of the choice of co-ordinates θ^{a}, make no explicit appearance.

6 Concluding remarks. Heuristics

This formalism has so far been applied to the analysis of the characteristic initial-value problem [1] and the nature of the infinite-blueshift singularity along the Cauchy horizon of a spinning black hole [5]. I expect other applications, both analytic and numerical, to follow.

I should like to conclude with some heuristic remarks. Spherically symmetric spacetimes are naturally and very simply described by a $(2+2)$ formalism [6]. It is remarkable that the generic formulae can often be cast in a form that resemble the spherical ones, with simple and physically intuitive modifications to allow for the presence of gravitational radiation [7].

As a sample, let me recall that any spherisymmetric metric can be expressed as [6]

$$
d s^{2}=g_{A B} d x^{A} d x^{B}+r^{2}\left(x^{A}\right) d \Omega^{2}
$$

where $x^{A}(A=0,1)$ are arbitrary co-ordinates for the quotient space M^{4} / S^{2}. The usual Schwarzschild mass function $M\left(x^{A}\right)$ is defined by [6]

$$
1-2 M\left(x^{A}\right) / r=g^{A B}\left(\partial_{A} r\right)\left(\partial_{B} r\right)
$$

Then it follows from the Einstein equations with stress-energy tensor $T^{\alpha \beta}$ that M satisfies a $(1+1)$-dimensional wave equation [6]

$$
\square M \equiv g^{A B} \nabla_{A} \nabla_{B} M=-16 \pi^{2} r^{3} T_{A B} T^{A B}+\cdots
$$

where the dots represent terms linear in $T_{\alpha \beta}$, which are relatively small in regions of large blueshift, e.g., near a Cauchy horizon. This remarkable formula brings out explicitly the effects of the nonlinearity of the Einstein equations.

There is a generic counterpast of this equation in double-null dynamics [7]. Let us define a generic "Schwarzschild mass function" $M\left(x^{\alpha}\right)$ by

$$
1-2 M / r=e^{-\lambda} \eta^{A B}\left(D_{A} r\right)\left(D_{B} r\right)
$$

where the area-function $r\left(x^{\alpha}\right)$ is defined by

$$
\left({ }^{(2)} g\right)^{\frac{1}{2}}=C\left(\theta^{a}\right) r^{2}
$$

(C is arbitrary and can be fixed by an initial condition). Then

$$
D^{A} D_{A} M=-16 \pi^{2} r^{3}\left(T_{A B}+\tau_{A B}\right)\left(T^{A B}+\tau^{A B}\right)+\cdots
$$

where the gravitational-wave stress-energy is defined by

$$
\tau_{A B}=\frac{1}{8 \pi}\left(\sigma_{A a b} \sigma_{B}^{a b}-\frac{1}{2} \eta_{A B} \sigma_{D a b} \sigma^{D a b}\right)
$$

in terms of the shear $\sigma_{A}{ }_{a}^{b}=K_{A a}{ }^{b}-\frac{1}{2} \delta_{a}^{b} K_{A}$.
Of course, these are merely words. No operational prescription exists for defining notions like "quasi-local mass" and stress-energy of gravitational waves, except in certain limiting cases (very high frequencies). Words can nevertheless be quite useful as a heuristic guide to complex formal calculations, especially so in situations where the "fluff" represented by the dots is relatively small.

Acknowledgment

I should like to thank the organizers, in particular Norbert Straumann and George Lavrelashvili, for a most stimulating conference in the glorious surroundings of Ascona. The work was supported by NSERC of Canada and by the Canadian Institute for Advanced Research.

References

[1] P. R. Brady, S. Droz, W. Israel and S. M. Morsink, gr-qc/9510040, Class. Quantum Grav. 13 (in press).
[2] R. A. d'Inverno and J. Smallwood, Phys. Rev. D22, 1233 (1980).
J. Smallwood, J. Math. Phys. 24, 599 (1983).
C. G. Torre, Class. Quantum Grav. 3, 773 (1986).
S. A. Hayward, Class. Quantum Grav. 10, 779 (1993).
R. J. Epp, preprint, Univ. Calif., Davis (1995): gr-qc/9511060.
[3] R. Geroch, A. Held and R. Penrose, J. Math. Phys. 14, 874 (1973).
[4] R. Arnowitt, S. Deser and C. W. Misner, in Gravitation: An Introduction to Current Research (ed. L. Witten, Wiley, 1962) p. 227.
[5] P. R. Brady, S. Droz and S. M. Morsink, paper submitted for publication.
[6] E. Poisson and W. Israel, Phys. Rev. D41, 1796 (1990).
[7] Sharon Morsink, Ph.D. thesis, Univ. of Alberta 1996.

