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Abstract This is an introduction to the basics of a (2 + 2)-imbedding formalism, adapted to a

double foliation of spacetime by a net of two intersecting families of lightlike hypersurfaces. It
yields a simple and geometrically transparent decomposition of the Einstein equations, and has a

variety of applications, e.g., to the characteristic initial-value problem (analytical and numerical),
the singularity structure of Cauchy horizons and definitions of "quasi-local mass."

1 Introduction

I should like to present a brief advertisement on behalf of a (2 + 2) lightlike
decomposition of the Einstein equations recently developed by our group [1]. Formalisms of this
kind becomes useful when the physics singles out particular lightlike hypersurfaces or directions,

as in the characteristic initial-value problem, the dynamics of horizons, gravitational
radiation, Planck-energy collisions and light-cone quantization.

A number of such formalisms have emerged over the years [2], beginning with the
famous 1973 paper of Geroch, Held and Penrose [3]. Basically, all have the same content, but
they look very different. The distinctive feature of our version is hat it is two-dimensionally
covariant and thus very compact, geometrically transparent and relatively easy to use—at
least, we find it so. We hope it will play a role in promoting this versatile technique (which
has never really caught on with relativists) into an everyday working tool.
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2 ADM (3 + l)-decomposition: a brief recap

To set the stage and ease us into the notation, I shall briefly remind you of the elements
of the familiar (3 + l)-decomposition of Arnowitt, Deser and Misner [4].

This is based on a foliation by spacelike hypersurfaces t const, with parametric
equations

xa =xa(C,t)-
Greek indices run from 1 to 4, and latin indices (in this section only) from 1 to 3.

The tangential base vectors e(a) associated with the intrinsic co-ordinates £a are
defined by e?, dxa/d£a. The intrinsic metric and extrinsic curvature of a hypersurface
t const, are then given by

9ab eia) ¦ e(b) Kab (Va np)e^a) e(b),

where na is the unit timelike normal:

n ¦ n gap nan@ — — 1.

The 4-vector dxa/dt can be decomposed into tangential and normal parts;

dxa/dt sae?a) + Nna

thus defining the lapse function N and the shift vectors sa (more conventionally written
as Na).

It follows that an arbitrary four-dimensional displacement dxa decomposes as

dxa e?a)(dC + sa dt) + Nna dt

and the 4-metric as

ds2 gaß dxa dxß gab(d£a A sa dt)(d£b A sb dt) - N2 dt2.

The standard ADM formulae [4] now express the four-dimensional Einstein tensor
components Gaß in terms of the intrinsic geometry (gab> ^'Rab) of the hypersurfaces, the
extrinsic curvature Kac, and its normal derivative, and the lapse and shift.

However, this formalism folds in the limit where the hypersurfaces become lightlike.
Because na is now a tangential vector, Kab no longer provides extrinsic information, and
the intrinsic metric gab becomes degenerate.

To deal with the lightlike case, one must fall back to a foliation of co-dimension two.
I shall next sketch briefly how this works.
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3 (2 + 2) lightlike decomposition: basic metric notions

We consider a double foliation of spacetime by a net of two intersecting families of
lightlike hypersurfaces E° (with equations w° const.) and E1 (given by u1 const.),
where uA(xa) (A, B,..., 0,1; a, ß,..., 1,..., 4) are a given pair of scalar fields over
spacetime, with lightlike gradients:

VuA ¦ VuB e"VB,
and where the matrix

AB 0 -1
n VAB - { __j 0

will be used to raise and lower upper-case Latin indices, and X(xa) is a scalar function.
The generators ia ' of EA are conveniently defined as

/<A> exVuA.

Two hypersurfaces E° and E1 intersect in a 2-surface S, with parametric equations

xa =xa(uA,6a) (a,b,... 2,3)

where (92,63) are intrinsic co-ordinates of S. Both generators t^ are orthogonal to S.

Holonomic basis vectors eia\ and the intrinsic metric of S may now be defined:

dxa
e"°) 90«' 9ab e{a) ¦ e(b).

The matrix gaf, and its inverse gab are used to lower and raise lower-case Latin indices, so
that e(a) go6e(b) are the dual basis vectors tangent to S.

Two-dimensional shift vectors sA are defined by

A~ duA a ~ AA) dxa-

As in the Arnowitt-Deser-Misner formalism, the shift vector sA measures how much one
has to deviate from the normal direction I^a) to connect points on different 2-surfaces
having the same intrinsic co-ordinates 9a. An infinitesimal four-dimensional displacement
dxa can be decomposed as

dxa qA)duA + efa)(d0a + sAduA).

Together with the completeness relation

9aß e-xVAB£iAkßB) A gabeia)eft
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for the basis (£^A\e^), this implies that the spacetime metric is decomposable as

ga0dxa dxß exnABduA duB + gab(d0a + saAduA)(d9b + sbB duB).

4 Covariant geometrical objects embodying first
derivatives of metric

Associated with its two normals l^, a 2-surface S has two extrinsic curvatures defined
by

KAab (V/^(A)a)efa) eß{b]

and easily shown to be symmetric in a, b. (Since we are free to rescale the null vectors

i(A), a certain scale-arbitrariness is inherent in this definition.)

A further basic geometrical property of the double foliation is given by the Lie bracket
of £(o) and tri). One finds

\t(B),t(A)} £ABUaela) (4.1)

where
cu* eAB(dBsA - sbBs%b).

The semi-colon indicates two-dimensional covariant differentiation associated with metric
gab, and eAB is the two-dimensional permutation symbol.

The geometrical significance of the "twist" u>a can be read off from (4.1): the curves
tangent to the generators ^(o), ^(i) mesh together to form 2-surfaces (orthogonal to the
surfaces S) if and only if ua 0. In this case, it would be consistent to allow the
coordinates 8a to be dragged along both sets of generators, and thus to gauge both shift
vectors to zero.

I shall denote by DA the two-dimensionally invariant operator associated with
differentiation along the normal direction l^Ay Acting on any two-dimensional geometrical
object Xab"i DA is formally defined by

DAxab.:. (dA-csA)xab:,

Here, dA is the partial derivative with respect to uA and £sd the Lie derivative with respect

to the 2-vector sA. As an example:

DAgab — dAgab — 2SA(a-b) 2-fClab-

Geometrically, DAXab is the projection onto S of the Lie derivative with respect to
1(A) of the equivalent tangential 4-tensor X°g-
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The objects KAab, ua and Da are all simple projections onto S of four-dimensional
geometrical objects. Consequently, they transform very simply under two-dimensional
co-ordinate transformations. Under the arbitrary reparametrization

na na fa/nb „,A9a fa(0b,uA) (4.2)

e{a)^e',a)=e{b)d0»/d9a'.

(which leaves uA and hence the surfaces EA and S unchanged), u>a and KAab transform
cogrediently with

Ha) -» e(a) Hb)C

By contrast, the shift vectors sA undergo a more complicated gauge-like transformation,
arising from the u-dependence in (4.2).

5 Ricci tensor

This geometrical groundwork is already sufficient to allow me to display the simple
form that the Ricci components take in this formalism. (Notation for the tetrad components

is typified by RaA Raßefa)£3Ay)

The results are

(%o6 I (2)R9ab - e-\DA A KA)KA

+ 2e-xKA\aKAd - -e-2Xuau)b - X,ab - -\*\b
Rab —D{AKB) — KAabKB A K(aDB)X

- \vab [(DE + KE)DEX - e-^V* + (exya a]

RAa KbAa.b - daKA - \daDAX A \KAdaX

A l-eABe-X [(DB + KB)wa - uaDBX],

where ^R is the curvature scalar associated with the 2-metric gab, and KA KAa.

The economy and geometrical transparency of these formulae are self-evident. In
particular, the shift vectors, which are largely an artefact of the choice of co-ordinates 9a,
make no explicit appearance.
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6 Concluding remarks. Heuristics

This formalism has so far been applied to the analysis of the characteristic initial-value
problem [1] and the nature of the infinite-blueshift singularity along the Cauchy horizon
of a spinning black hole [5], I expect other applications, both analytic and numerical, to
follow.

I should like to conclude with some heuristic remarks. Spherically symmetric space-
times are naturally and very simply described by a (2 + 2) formalism [6], It is remarkable
that the generic formulae can often be cast in a form that resemble the spherical ones,
with simple and physically intuitive modifications to allow for the presence of gravitational
radiation [7],

As a sample, let me recall that any spherisymmetric metric can be expressed as [6]

ds2 gAßdxA dxB + r2(xA) du2

where xA (A 0,1) are arbitrary co-ordinates for the quotient space M4/S2. The usual
Schwarzschild mass function M(xA) is defined by [6]

1 - 2M(xA)/r gAB(dAr)(dBr).

Then it follows from the Einstein equations with stress-energy tensor Taß that M satisfies

a (1 + l)-dimensional wave equation [6]

DM gABVAVBM -16n2r3TABTAB + ¦¦¦
where the dots represent terms linear in Taß, which are relatively small in regions of large
blueshift, e.g., near a Cauchy horizon. This remarkable formula brings out explicitly the
effects of the nonlinearity of the Einstein equations.

There is a generic counterpast of this equation in double-null dynamics [7]. Let us
define a generic "Schwarzschild mass function" M(xa) by

1 - 2M/r e-xnAB(DAr)(DBr)

where the area-function r(xa) is defined by

((2)fl)è C(6a)r2

(C is arbitrary and can be fixed by an initial condition). Then

DADAM -l6ir2r3(TAB + rAB)(TAB + rAB) + ¦¦¦

where the gravitational-wave stress-energy is defined by

—
^ („ „ab * „ „DabTAB — TT~ I 0-Aab<?B - -^nAB(TDab<r
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in terms of the shear aAb KAb - \8bKA.
Of course, these are merely words. No operational prescription exists for defining

notions like "quasi-local mass" and stress-energy of gravitational waves, except in
certain limiting cases (very high frequencies). Words can nevertheless be quite useful as a
heuristic guide to complex formal calculations, especially so in situations where the "fluff"
represented by the dots is relatively small.
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