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Abstract

The ground state configurations of the one-dimensional Fermi gas (Falicov-
Kimball model) are investigated using expansion in powers of U where LJ is the

pinteraction strength. For a given ion density p; — we consider only those periodic

configurations defined by vp ions followed by v(q-p) holes. We then show that
there exists critical values p' and p such that for electron densities pe < p the

segregated configuration (v °°) has lowest energy (in the family of configurations
under consideration), while for p<p < 1 - p j (or p < p e ^ p i if
U < 0) it is the configuration with period q (v 1). In particular the segregated
configuration cannot be a ground state for pe > p
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1. Introduction

The Falicov-Kimball model can be viewed as a lattice model of spinless

quantum electrons interacting with classical ions. The electrons do not interact
with each other, and the only interaction between ions is a point hard-core (i.e.

the sites of the lattice are either empty or occupied by a single ion). The energy of
the system is simply the sum of the kinetic energy of the electrons and the

interaction energy between ions and electrons.

The Hamiltonian is

H -I (<ax+l + \ll ax) + UX < axW(x)
X x

where a*, ax are the creation and annihilation operators for a spinless electron at

site x, W (x) is 1 or zero according to whether the site x is occupied by an ion or

empty.

This model was originally introduced to study metal-insulator transitions in
transition-metal oxides [1]. Later it was realized that the same model is also of
interest to study crystallization and mixed-valence phenomena [2, 3]. It is also a

simplified version of the Hubbard model [2].

The problem one would like to consider is the following : given the ion
and electron densities pj, pe, what is the configuration of ions for which the

energy of the system is minimum ground state configuration)

In a recent work, Freericks and Falicov [4] arrived at a conjecture which is

very interesting, but also very surprising : if the interaction is attractive (U < 0),

then for pe pj the ground state configuration is periodic with maximum possible

spacing between ions (which corresponds to a repulsive effective interaction
between ions), on the other hand for pe < p£ < pj, (where the critical value p£

depends on the interaction U, and the ion density pj) the ground state

configurations is the "segregated configuration" where all ions clump together.
For densities between p£ and pj, the situation is highly complex : it is expected that

an infinite number of transitions, with a devil's staircase structure, will appear,
with ground state configurations which are periodic or mixtures. Finally it is

conjectured that p£ tends to pi as U -> <~. If the interaction is repulsive (U > 0) the
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conjecture is similar replacing "ions" by "holes", i.e. for pe 1 - Pi the ground state

configuration is periodic, while for pe < p£ < 1 - p, the segregated configuration

gives the minimum energy.

In this article, we establish results which tend to support the above

conjecture. Given the ion and electron densities pj, pe, we consider only crenel

configurations defined by clusters of m ions separated by the distance a (fig. 4), and

we look for the size of the clusters for which the energy is minimal. We then
show that for attractive interaction (U < 0) the size of the cluster is minimal if
pe pi; furthermore there exist p£ such that if pe < p£ then the segregated

configuration has minimal energy (among crenel configurations); finally for
Pe < Pe < Pi the configuration defined by the mixture of the periodic configuration

(corresponding to pe pi) and the segregated configuration has energy which is

smaller than both the segregated and the periodic. For the repulsive case (U > 0), if
Pe 1 - pi the size of the cluster is minimal; furthermore there exists p^ such that

for pe < pg the segregated configuration has minimal energy; for p^ < pe < 1 - Pi,

the mixture of segregated and periodic configuration has energy smaller than
both.

In Section 2, we define the model and present a qualitative discussion of
the transition between the segregated and the periodic configurations. Then, in
the subsections of Section 3, we are concerned with crenel or segregated

configurations. These configurations are defined in sect. 3.1; the method we have

used is based upon the expansions in power of U for the eigenvalues (sect. 3.2)

and for the ground state energy (sect. 3.3). To establish our main results (sect. 3.5),

we need bounds to estimate the rest of the expansions and this is done in sec. 3.4.

In the last Section, we conclude with some remarks which are valid for arbitrary

configurations. In particular, for the ion density pi — (q integer), it is shown

that the periodic configuration with period q can be a true ground state

configuration only if the electron density pe is equal to pi (if the interaction is

attractive); for repulsive interaction and pj 1 — — the periodic configuration with

period q can be a true ground state only if pe —.

4
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2. Qualitative discussion

The general picture recently discovered by Freericks and Falicov [1] can be

qualitatively understood using simple properties of the Fermi energy, at least if
the coupling constant U satisfies the condition IUI > 4, which is the case we want
to study in this paper.

We consider a system consisting of Nj ions and Ne electrons on a one-
dimensional regular lattice A with N sites and periodic boundary conditions. We

denote the ion configurations by s {sx I x e A}, where the variable sx is -+- 1 if the

site is occupied by an ion and - 1 if it is empty. Since the electrons do not interact

with each other the Fermi energy is obtained by filling the lowest Ne levels of the

one-electron Schrôdinger equation on the lattice,

- [\|<-n (x + 1) + yn (x -1)] + U(x) \|/n(x) En \|/n(x) (1)

where :

u(x) u ^^Y^
10 if x is empty

and Ens [-2,+ 2] U [U-2,U + 2]

Ne
Let EN (U, pe ; s) jj £ En (2)

| U if x is occupied
sx + i

n= 1

denote the ground state energy (per lattice site) for the configuration s, with

Ne Ni(s)
Pe n" Pi ¦ "^f" (3)

the electron and ion densities.

Given (U, pe; pi), the problem is then to find the ion configuration s, with
Pi (s) pi, which minimize (2), i.e.

En (U, pe; pi) En (pe) min {En (U, pe; s) I p; (s) pi) (4)
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We call ground state configuration (gsc) for the densities (pe, pi), those ions

configurations for which the minimum in (4) is obtained, and denote by G (pe, pj)
the family of all gsc for (pe, pi).

Let us recall that the function EN(pe) is continuous, convex, differentiable almost

everywhere with slope given by the Fermi level. Furthermore, using the particle-
hole symmetry, one has the following identities [1] :

En(U, pe;s) En(-U, pe;-s) + Upe (5)

En (U, pe; s) EN (U, 1 - pe; - s) + U (pe + pi -1) (6)

We shall thus restrict ourselves to the repulsive case U > 0. (The attractive case

U < 0 is identical if we interpret sx + 1 as an empty site and sx - 1 as occupied).
On the other hand Eq. 6 implies

En (U, pe; pi) EN (U, l - pe; 1- pi) + U (pe + pi - D (7)

and we can restrict the discussion to the case pe < 1 - pi (which is pe 2 pi for U < 0).

To simplify the qualitative discussion, we shall consider the thermodynamic limit
N —> °°, with fixed (pe, Pi), and periodic ion configurations s such that pi (s) pj.
The energy levels En En (U; s) are non decreasing as U increases. Therefore, for a

given s and pe, the ground state energy Eq. 2 is an increasing function of TJ;

moreover for any pe > pe we have

ENKpe;s) - En (U, pe; s) > EN (°°, pe; s) -En(U, pe;s) >0

Furthermore

—^(U,pe 0;s) Ei(U;s) > -2
ope

(8)

oEn-— (U, pe 1- pi; s) En=N.Nj (U; s) < 2
ope '

and both derivatives are non decreasing as U increases.
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Finally, let us remark that given N, pj, pe and U ~, then the ion configuration
which minimizes Eq. 4 is the segregated configuration seg) where all ions

clump together (U(x) U for 1 < x < Nj and U(x) 0 for N; < x < N). In the

thermodynamic limit the ground state energy for the segregated configuration is

given for all TJ > 4 by

Esee(U,pe; Pi) - - (1 - Pi) sin
b K

Pe
Jt- for pe < 1 - pj
I I-Pi'

(9)

Eseg(U,pe; pi) - —pi sin [ n—- J+ U (pe + Pi -1) for pe > 1 - p.

(For TJ oo, then pe < 1 - pj and the above result is straightforward; for TJ < « see

Sec. 3.4)

The consequences of these general properties are shown in figure 1 for large U

(the ion density for the segregated configuration is pi Pi (s)), and yield the

following :

1) For pe < pe (s) the segregated configuration has lower energy then s, while for

Pe > Pe (s) if cannot be a gsc. Moreover p (s) is an increasing function of TJ

which tends to (1 - pi) as U —> oo.

2) Let s0 be a gsc for pe 1 - pi (fig. 3). Constructing the convex envelope of the

functions E(U, pe; s0) and E(U, pe; seg), we see that for values of pe

corresponding to the linear part of this envelope, i.e. pe > pf, the

configuration represented in figure 2 has an energy which is lower than the

energies of both the segregated and s0 configurations : it is a mixture of the

segregated and s0 configurations.

3) We shall see below (Proposition 5) that for large U, the convex envelope may
coincide with E(U, pe; s0) only at pe 1 - pi- In this case s0 is a gsc only for

pe 1 - Pi- For Pg < pe < (1 - pj) the mixture configuration has energy smaller

than seg. and s0; for pe <p£ the segregated configuration has energy smaller

than s0 and mixture. Moreover pc is an increasing function of TJ which tends

to (1-pi) as TJ -» oo.
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4) If there exists p > 0 such that pe (s) > pe for any periodic configuration s,

then for pe < p the gsc cannot be periodic. In this case constructing the

convex envelope, we conclude that there exists p™ such that for pe < p g
the

segregated configuration has energy smaller than any periodic configuration,
while for p(c) < pe < 1 - Pi, the ground state configurations are either

periodic, or mixture of two periodic configurations (or some other

configurations which cannot be obtained by means of periodic
configurations).

U

E(?

?pC ?»(s) 1-9

MMX

Fig. 1.

a) E(U oo,pe;s)

b) E(U, pe; s)

c) E(U, pe; seg) E(»o, pe; seg) for all TJ > 4.

seg s0

Fig. 2. Mixture of s0 and

segregated

AE(V
1-?i

seg

^ s2

s0

*9*
1-Ti

/
SO

''seg

;-s0

u

Fig. 3. Ground state configurations for a given ion density pi
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3. Crenel configurations
3.1. Definitions

In the following, we consider only crenel configurations, i.e. periodic
square barrier potentials U(x) with width m and separation a (fig. 4).

u

m a

u M M ¦•—•- ¦•-• Jl" ~i r~i r« «Im n'i • '* h m'» »'x m ¦>
N=lN0-0

m
Fig 4. Crenel configuration with ion density pj -p.

For a given ion density

«-Ç (10)

with p relatively prime to q, we shall then consider those crenel configurations
with N 1 • N0 sites,

1 vq m vp a v(q-p) vq (1 - pj), (11)

where v is an integer, and N0 -> oo in the thermodynamic limit. The condition
Pe < 1 - pj is expressed by

Ne < N - Nj N0 v (q-p) (1 - Pi) N0 1. (12)

The problem we want to study is the following : given p; and pe, for what values
of v is the ground state energy minimal

Let us recall that for any configuration of ions, and TJ > 4, there are exactly N-Nj
eigenvalues in [- 2, + 2] (Gerschgorin's theorem, Bull. Acad. Sc. Leningrad 1921,
749-754).We introduce the notation

En - 2 cos k TJ - 2 ch k

For the following discussion, we note that

exp(-K) ~{(U-En)- V(U-En)2-4} =o(U"1)

(13)

(14)
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3.2. Asymptotic Expansion for the Eigenvalues

Using standard techniques, we obtain the eigenvalue equation

cos (1 K) [ch(mK)]'1 sin k sin ((a + l)k) - e(k) sin (a k)

2tc
IK

where

(15)

IK j^ {!,...,N0)

„. th (mK)
e(k)

sh (k) I+4 En(U-En) 2 En. (16)

To discuss the asymptotic expansion with respect to U"1 we rewrite e(k) in the

form :

1 f e-2mx 1

e(k) [1 + e-2mKj jß - r_K5 (2 e- + En)j (17)

B - _eeK2K 2 + En e-K) O (U-l) (18)

or equivalently

1 e-2mK e-2mK
e *) \ + e-2mK

B - + e-2mK En (19)

For U oo Eq. (15) yields
n 7C

5in ((a + 1) k) 0 i.e. k(~> ^j n 1,...,

Since En is non-decreasing as U increases, we introduce Sn which describes the

n rc
correction to kn with respect to i. e.

E„=-?.cosi ^y^l (20)

where 5n ^ 0: ôn satisfies the equation
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sinon e(8n) sin
n tc + aSn

a + 1

(21)

+ cos (1 K) [ch(mK)]"1 sin1 f n jt - Sn

a + 1

/o x „ -. n 7t - 5n
e (on) e (k) with k

a + 1 n 1,..., a.

We should remark that for the single potential well (fig. 5) we have

sin 8n B (5n) sin
n 7C + a ôn

ä~TT

with B given by Eq. 18. From Eqs, 21,19, we see that the corrections with respect to
the single potential well are of the order U"m as U -> oo.

U

X X M M !t X X1» »'M XXXXXXXX

Fig. 5 Potential well

Let us also note that for m 1, Eq. (21) becomes

• s ru i-l I • f njt + aSfa fnn-8
sin on [ch k] M sin —^—j— + cos (1K) sin a + ^ (22)

and thus for cos (1K) -1 we have Sn 0. For any other value of cos (1 K)

Sn < tc/2 if U > 6.

For m > 1, Eqs. 19 and 18 imply

I e(k) I < IBI + e-mK [ch mK]"1 < 2
l-e"K + e ¦2k (23)
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and thus the right hand side of Eq. 21 is smaller than 0.95 for U > 6, from which

we have

0 < 5n < £ if U>6 (24)

Proposition 1

For any n 1, 2, a, the correction 8n has an asymptotic expansion in powers of
U"1 of the form

5n 2S X <*
k=l

u-k

S
n tc n 7t

sm a + 1 ' C - cut>
a + 1

-/ for m> 3 :

ci l C2 - C
a + 3

3 4-1

(25)

.for m 2 :

a + 3
ci 1 C2 - C j—j- + cos (1K)

for m 1

2C 2
Cl 1 + COS (1 K) C2 - -j2" (l + cos (1K))

In particular, for any width m, the coefficients Ck with k < m are those of the

potential well (fig. 5); the first term which depends on m appears at the order U"m

in the form cm cm + cos (1K), where cm is the coefficient for the potential well.

Proof

From Eq. 18 and 19, we have the expansion
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B 2U-1 +3EnU-2 + 4(E2 + l)U-3 + 0(U"4)

e (l-e-2mK) B-e-2mK En + 0(U-2m"2)

chK jOLT-En)

ch2K 2(U-En)2 -1

chmK 0(Um)

Therefore from Eq. 21, we have first for any m

lim sin Sn 0 i.e. 8n o (U_1)

Then, for any m > 2,

lim U sin Sn 2 sin [^tt| i.e. 5n 2 S U"1 + o (U"1)

U^~ Va+V

for any m > 3,

lim U2[sin8n-2SU-l]
U-> oo

lim U2
U-> oo

(2U-1 + 3 En U"2) (S + -TT 2 S C Ufa - 2 S U"1
3+1

a + 3 a + 3
2 S C —-j i.e. 8n 2 S U-l - 2 S C —rr U"2 + o (U"2)a+1 " a+1

On the other hand, for m 2

a + 3
lim U2 [sin 8n - 2 S U"1] -2SC —f + 2 S cos (1 K)

U-
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while for m 1

lim U sin 8n 2 S (l + cos (1 K))

lim U2 [sin 8n - 2 S (1 + cos 1 K) U"1]
U-> oo

-4CS
(1 + cos 1 K)2

(a + l)2

Since e(8n) (Eq. 19) is of the form

2-1 Ck re(8n) Zw ck,r U* 8";
k>l n

r>0

(series which is absolutely convergent for IUI > 4) the right hand side of Eq. 21 is

of the form

I U-k

k>l
dkS+ £ dkr 6n'

r>l

+ COSQK) £ u"k[dkS + X dkX
k>m r>l

We can thus conclude that 8n has the asymptotic expansion stated by
Proposition 1.

Proposition 2

For any n 1, 2,..., a, the eigenvalue En,K has the asymptotic expansion

En,K -2C-4i^rT £ dkU
k>l

-k

(26)

C cos
n tc

a + 1
S sin

n jc

a + 1
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where, for m > 3

di

for

1

m 2

a + 4
' d2 -Ca + l

di 1 d2 - C ~T + cos (1 K)
a t 1

for m 1

3 xdi 1 + cos (1K), d2 - C ^tj (l + cos (1 K)) 2

2jc

lK=j^-{l,2 N0}. (27)

We should again notice that for any m, the coefficients dk with k < m are those of

the potential well (fig. 5), and at the order U~k with k < m the energy level is N0
time degenerate.

Proof : This property is a direct consequence of property 1 and the expansion

S Sr,

k*o
(2k)! ^a + 1 c + 2 k+1 a + 1

(28)

3.3. Asymptotic Expansion for the Ground State Energy

We consider the system defined in Sec. 3.1 with

p
Pi - 1 vq m vp a v(q-p)

Proposition 3

For the electron density



682 Gruber H.P.A.

n —
Pe T ' n 1/ 2,..., a (T 1 - Pi)

the ground state energy has the asymptotic expansion

EN (pg) E (U oo; pe) -—^ £ ck (pe; v) IT*
k> 1

where

E (U °o; pg) -r 1 —

tc 2 lpe + 1,
Sln(2 "TTT")

Sln(2 STÏ*

ci (pe; v) 2

lpe + 1, lpe

Pe- J
sin(7CiTT)

(29)

Moreover, for pe 1 - pj

±TT-1EN(pe) -j-tr + oon (30)

Proof

For n 1 pe, we have Ne N0 1 pe N0 n, i.e. all the n first "bands" are

filled with N0 electrons. Thus

En (pe)

n N0

rl it r5En<K (31)

n l
No

Using proposition 2, together with the identities
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2
n
X cos

n l

f n tc
s

la + 1,

,tc 2 n + 1

-1 +
sin(2TTT

w* 1
ïsin(2 m*

683

(32)

n

n l
'njfa

sinz
a + 1 n —

n + 1, n
cos(7rITT)sin(jcITT)

1

sin (ifa + 1'

the first part of the proposition is established. To conclude the second part, we
notice first that E (U oo; pe) 0 for pe 1 - pi; then computing the coefficient at

the order U"2 we find c2 (pe ; v) 0 for pe 1 - pj.

Remarks

1. For any width m, the function EN(pe) at the order U"k, with k < m, is linear

for n-1 < pe 1 < n (EN(pe) 0 for pe 0). Furthermore, at this order, the value

of En (pe) for pe 1 n, is given by the eigenvalue En of the square well

potential (fig. 5). This remark leads us to conjecture that for any periodic
configuration of ion, the ground state energy has an expansion

E (pe; s) £ dk (pe; s) U"1

k>0

where at the order k < m, with m the number of ions in the smallest cluster

of ions, the coefficient dk is obtained using the eigenvalues of the square well

potential. In the attractive case, (U < 0), we just have to replace "ions" by
"holes".

2. For U oo, we have

EN(U °°;pe) — — (1 - pi) sinfjc--2-
jc I 1-pi

+ — [A (pe, Pi) + B (v; pe, Pi)]
vq

(33)
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where : A (pe, p;) + B (v; pe, pj) > 0 for pe * 0 or (1 - pj)

and

A (pe, Pi) 1 - - sin
TC

2 Pe Ì {. 2 pe A
— sin tc - 1 -
71 l 1-PiJ l 1-Pij

COS TC
Pe

1 "Pi
(34)

B O (v-1).

3. We should note that Ci(pe ; v) > 0 (Eq. 29) and for v -> oo we have

lim ci (pe) 2 pe ^ilLsincA)
2Tcpe 1-Pij

(35)

4. Using standard perturbation theory one can show that the asymptotic
expansion converges. The question however whether the radius of

convergence can be bounded by a constant independent of v (or a) remains

open.

3.4. Bounds on the Ground State Energy

Using Eqs. 22,19,18, it is possible to derive upper and lower bounds for 5n '•

K ± Sn < 5"

5n= ü(1-0-)[1 + cos(1K)]S

for m 1 fa

lSn=Ü"(1+U) H+cos (IK)] S

8n=ü-(1-ü-)S
form>2 :\

lÔn=è(1+u-)S
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where the constant c1 Cj c' c" are independent of (U, a, m) for U > U0- For

example, for U > 8 we find cj 4, cj 12, c' 5, c" 27.

From the bounds on 8n, we can then obtain bounds on the energy levels

En - 2 cos

for m 1

nie - Sn

va + l, C cos
nrc 1 c • (JUL
ITT fas sm ÏTT

En>-2C-U-1^Tfl+-îj-j[l+cos(lK)] S2

En<-2C-U-1^Tfl--fj-J[l + cos(lK)] S2

where DJ 13,5 and DJ 7 for U > 8,

for m > 2

En^-2C-U-1ITT 1+g-IS2

^-^-^^(i-ir)*2
where D' 37 and D" 22 for U > 8.

3.5. Results

Using the bounds on the energy levels and Eq. 31, we have the following :

Proposition 4

p n _For the ion density pi — and the electron density pe y n 1, 2, a, where

l vq, a= vq(l- pj), the ground state energy is given by
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E(U, pe;pj) (1 - pi) sin f Tt—2-1 +

-I

+ — |A(pe, pi) + B (v; pe, pi)
vq

ci (pe; v)f (l + O (U"1)) U"1} (36)
I-Pi + —K1 vq

where I o(u_1) I < D U"1 with D independent of (pe Pj, v) for U > U0 (we have

given explicit value for U0 8), and ci (pe; v) > 0 is defined by Eq. 29.

Theorem

i) For pe 1 - pj and U sufficiently large the crenel configuration with minimal

energy corresponds to v 1.

ii) For pe < 1 - pj, there exists U (pe) such that for U > U (pe), the segregated

configuration (v oo) has minimal energy.

Proof

i) For pe 1 - p;, we have obtained

E(U,pe,pi) -—U"1 + O0T3)
vq

and we have explicit bounds on the rest, which do not depend on v.
Therefore, if U is sufficiently large, the configuration with v 1 will have

minimal energy.

ii) For pe < 1 - pj the coefficient of v1 in Eq. 36 is positive for U sufficiently
large and thus the energy decreases as v —> oo. In fact, for v —> oo, it follows
from Eq. 34 and 35 that the coefficient of v1 in Eq. 36 is :
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JC ^ 1-piJ ^ I-pi J l I-pi

1 f2icpe^-^îfa^fa1
This last expression indicates that the value U (pe), at which the segregated
phase appears, is an increasing function of pe (Figs. 6,7).
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7T72
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f2(y) =— (2 y-sin (2 y))
ZTC

cos y
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1-Pi

1-?i

,,?e

S segregated

/ u
—^-

Fig. 7 : Phase diagram for the crenel

configurations with pj —
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Corollary

pFor any ion density pi — there exists pe pe (U; q) and Pe Pc ^; q) such that

for pe < pe, the configuration with v oo segregated configuration) has

minimum energy, while for pe > p it is the configuration with v 1 (fig. 7).

This corollary is a direct consequence of the theorem together with the convexity

property of E (pe).

Remark

We have established Proposition 4 only for discrete values of the electron

density, i.e. pe — [recall that pi *-\ However, the two main points of the

proofs are the existence of uniform bounds, and the fact that :

E (U; pe, pi) ESee (pe. Pi) + — [a - ß U"1]
° vq

where a and ß have a limit as v -» oo with a > 0 if pe < 1-p; and a 0 if pc 1-pj.

In other words, the increase of kinetic energy and the decrease of potential energy
are both proportionals to V"1. These two points will remain valid for

n" 1 < pe < (n + 1) 1.

4. Concluding remarks

We have shown that the crenel configuration with minimal energy is

given by the periodic configuration with period q [ p; — ] if the electron density

Pe is such that pe < pe S 1-pi (or p < pe < pj in the attractive case U < 0); on the

other hand if pe < p it is the segregated configuration.

However, it should be stressed that we do not infer that the crenel

configuration with period q is a ground state (with respect to all possible
p

configurations). Such a statement is in fact wrong for ion densities pi — with

2 < p < q-1; indeed in such cases we can always consider the mixture of the
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1
configuration pi » with period 2, and the configuration pi 0 (if 2 p < q) or pi 1

(if2p>q),i.e.

if 2p < q : s 2 ^ p; [j] + ^2- Pi [0]

if 2p > q : s 2^ pi [|] + ^ Pi [0]

From Eq. 30, we have :

.2Rif 2p < q : E (pe;s) --^ U"1 + O (U^ •

if 2 p > q : E (pe; s) -^ U'1 + O (U"3)
A

On the other hand, for the periodic configuration with period q

E(pe) =-|u-1 + OOT3)

Using the explicit bounds we have obtained, we can find U0 such that for U > U0
the mixture configuration has energy smaller than the periodic one. Therefore for
ion densities pi p/q, with p * 1 or q, the crenel configuration with period q is not
a ground state configuration for pe 1-pj (or pe pi if U < 0).

What is the situation for p; — and p; 1 - — We shall discuss only the case
n 4

1 1

pi 1 - — (i.e. pj — for the attractive interaction U < 0). In this case a v, and
h q

thus, for the periodic configuration with period q (i.e. v 1), we obtain from
proposition 2 with n a 1, cos (IK) - 1 :

Ei,K -2U"1 +OOJ'3) ifq>2

Ei,k 0 ifq 2

It follows that the tangent of the function E (pe) at pe 1 - pi will intersect Eseg (pe)

if

E(pe= 1 - pi) > -- (1-pi).
TC
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But we have seen that

2 37n
E(pe= 1-pi) >-- [l+üjU

Therefore, at least, for U > 12, we can conclude that the convex envelope of the

functions Eseg (pe) and E (pe; s), with s the periodic configuration with period q,

coincides with E (pe; s) only at pe 1—pi — I

Proposition 5

For pi l--(orpi — if U < 0 j the periodic configuration with period q can be a

ground state configuration only for pe 1 - pi (or pe pi if U < 0). Furthermore,
there exists p£ p£ (U) such that for p£ < pe < 1 - pi, the mixture of the segregated

and the periodic configuration with period q, has energy smaller than the other
two configurations; for pe < p£ the segregated configuration has energy smaller

than the periodic and the mixture.

The last question which remains open is thus to prove that the crenel

configuration with period q is the true ground state with respect to all
2

configurations. To illustrate this point, let us consider the densities Pi 3 and

3 1

Pi T (U > 0). Taking mixtures consisting of the configurations pi ~- and pi 0,

we notice that, at the order U the periodic configuration and the mixture have

the same energy. However, as it is shown in the Appendix, at the order
U the periodic configurations have energy smaller than the mixture. In the case

1 1

Pi TV we could then consider a mixture of pi t and p; 0; going to the order U

we see again that the periodic configuration has energy smaller than the mixture.

We are thus led to conjecture that for pi 1 - — for pi — if U < 01 the periodic

configuration with period q is the true ground state.
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Appendix

q-1 1
The case pi — pe — is particularly simple since it corresponds to

4 4
a 1 and thus n a 1 in Eq. 21 (for the attractive potential U < 0 it corresponds to

1

Pi Pe -)•

For pi 2> the energy spectrum is known exactly and for the levels in [-2, +2]

we have :

E y-^(y)2 + (2cosK)2 K ^{1,2,...,N0}

which gives the expansion

E - 2 (1 + cos 2 K) U"1 + 4 (1 + cos 2 K)2 U"3 + O (U"5) (A.l)

and for the ground state energy

Ef (pe 2 ; Pi 2 Ì ~ U_1 + 3 U"3 + ° (U"5) (A2)

q-1
For arbitrary q > 3 pi -—

E - 2 sin j
and Eq. 21 yields, with m q -1 > 2,

E - e - cos (q K) [ch (m k)]"1 (A.3)

with

e 2 U_1 + 3 E U'2 + 4 (1 + E2) U"3 + 15 E U"4

+ 12 U"5 - E U"2m -4U"2m_1 + 0(U"6) (A.4)
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[ch (m k)]"1 2 U'm (1 + m E U"1 + m U-2) + O (U-6)

At the order U we thus have for the energy levels

E -2IT1 + 2 IT3 -2cos(qK) [u-2 8q;3 + U"3 5q;4]

(where 8q;n is the Kronecker symbol)

and for the ground state energy

EFfpe ^ | [-U"1 + U"3 + O0T5)] (A.5)

Therefore the ground state energy per unit period (i.e. q Ep) for q > 3 is

smaller than for q 2, (for large U).

At the order U we find :

for q 3

E - 2 U_1 + 2 U"3 - 2 LT5

-2 cos (qK) [u-2 - 5 U-4 - 4 cos (qK) U"5]

EF(pe= ^ \ ["U"1 + U'3 - U"5 + 0(U"7)] (A.6)

for q 4

E -2LT1 + 2 U-3 -4U"5 -2 cos (qK) [u-3 - 6 U"5]

EFfpe= ^) \ [-U'1 + U"3 - 2 U"5 + O (U"7)] (A.7)
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for q > 5

E - 2 U"1 + 2 U"3 - 4 U"5 - 2 cos (qK) [U"4 5q;4 + U"5 5q;5]

EF(pe= ^j'\ ["U"1 + U"3 - 2 U"5 + O (U"7)] (A.8)

Therefore the ground state energy per unit period for q > 4 (Eqs. A.7 and A.8)

is smaller than for q 3 and q 2 (Eqs. A.6, A.5).
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