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The Measurement of Nuclear Moments of Excited States

by Angular Correlation Methods. I
by Kurt Alder

C.E.R.N., European Council for Nuclear Research, Theoretical Study Group at the
Institut for Theoretical Physics, University of Copenhagen,

H. Albers-Sehönberg, Ernst Heer and T. B. Novey*)
Swiss Federal Institute of Technology, Zürich.

(14. VIII. 1953.)

Summary. It is shown that angular correlation measurements are well suited
for the determination of the magnetic moment and the electric quadrupole coupling
in short lived excited states. Formulae and graphs are given for various
experimental arrangements and spin values between 1 and 7/2. The influence of finite
resolving time and delayed coincidence measurements is discussed. Sample calculations

are made for the well known case of Cd111.

Introduction.

For the study of nuclear structure and to aid in decision between
different nuclear models it is of importance to obtain information
about the different nuclear moments. These — the angular momentum,

the magnetic moment and the electric quadrupole moment —
can be obtained for stable nuclei by well known methods such as

optical spectroscopy and nuclear resonance. These methods are
applicable with limitations for long lived isomers but are inadequate
for short lived excited states. The spin of such excited levels can be
determined by the methods of nuclear spectroscopy (nuclear
reactions, ß and y spectroscopy). Angular correlation measurement is

an especially helpful tool provided that it is not influenced by extra
nuclear fields. The investigation of such an influence gives on the
other hand information concerning the nuclear moments. Deutsch10)
first pointed out that the magnetic moment of an excited state can
be determined by measuring the angular correlation as a function

*) U. S. A. National Science Foundation postdoctoral fellow, on leave from
Argonne National Laboratory.
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of an external magnetic field. This experiment has been carried out
by the Zürich group2)3) in the case of the first excited state of
Cd111. Recently the same group has shown4)6)13) that the electric
quadrupole interaction can be investigated by analogous experiments.

By embedding the active atoms in crystals they measured
the quadrupole coupling for the same level of Cd111.

The theoretical base of the experiments was given in an earlier
paper8). The there used formalism is very general and an explicite
formula is given only for one special case. Therefore it was considered
to be worth while to collect the formulae for various experimental
arrangements for the determination of magnetic and electric nuclear
moments. The sensitivity of different proposed methods will be
especially discussed.

When the angular correlation is measured between two nuclear
radiations which are emitted successively, the correlation function
W (kx, k2) is defined as the relative probability for the emission of
the first radiation in the direction kx and the second radiation in the
direction k2. Any undisturbed correlation function can be expressed
as a series in even Legendre polynomials :

w(@) y;Akkplc (cos e) (i)
k

where 0 is the angle between kx and k2. The coefficients Akk depend
on the type of the two radiations and on the spins (and parities) of
the three levels involved. They are tabulated for nearly all interesting

cases9)12)15)16).

In this paper we will restrict ourselves to the important case of
unpolarized y—y correlation. In the last section some other possible
correlation experiments will be discussed. While no other restrictions

are made on the formulae, numerical tables will be given for
cases involving no higher multipole orders than quadrupole.

Formula (1) for the correlation function may be completely
changed if extra nuclear fields act during the lifetime x of the
intermediate state. To have a measurable influence the interaction
energy AE must be of the order %/x. The available field strengths
restrict the measurement to cases where x is longer than about
10-9 sec. In the next section we will derive a general formula for
the influenced correlation function. This influence depends on the
geometry of the experimental arrangement and on attenuation
factors G which describe the mechanism of the interaction. We will
restrict ourselves to fields with axial symmetry. The magnetic
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moment may be determined from its interaction with any magnetic
field. The simplest experimental procedure is to apply an external
magnetic field and to measure the correlation as a function of the
field strength. For an analogous measurement of the electric
quadrupole moment no sufficient field gradients are available. One may
however use the highly inhomogeneous fields in crystals. According
to the previously mentioned restriction our theory will be applicable
only for crystals with axial symmetry*).

General Theory.

For the base of the theory we refer to an earlier paper by one of
us8). The here used notation is in general the same. By Jq, I, I2 we
denote the spins of the three levels involved and by Lx, Lx and
L2, L~ the multipole orders of the (in general mixed) first and
second radiation.

For the correlation function, i.e. the relative probability for
emission of the two quanta in the direction kx, k2 we write :

W(kxk2) Z lHUilHxCkx)] Bm) (Bm(t)\H2(k2)\CA\2
l p m

E (MHx\Bm) (Bm(t)\H2\Cv) (Al\H1\BJ*(Bm,(t)\H2\C1>)*. (2)
Ipmm'

Because of the finite lifetime t of the intermediate state we write
for the wavefunction Bm(x, t) :

BJx, t) Bm(x) é-l e-«2*; ^=com. (3)

Introducing this expression in the preceding formula, we get :

W(kx,k2,t) 27 (Al\Hx\Bm)(Bm\H2\CA(Al\Hx\BJ*(Bm,\H2\CA*
l-pmmt

X e-lXlx-i(.wm—a>m')it^ U\

W(kx, k2, t) is then the correlation between the radiations when
only particles with a fixed delay t between the first and the second

*) Axial symmetry of the field in this connection means that the tensor ellipsoid
of d2Vldxt dxk is rotational symmetric.
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particle are detected. By integrating over t from 0 to oo we get
Goertzel's formula11) :' oo

W(kx, k2) Ì f W(kx, k2, t) dt

E (Ai\Ex\Bm) (Bm\H2\CA(Al\Hx\Bm,)*(Bm,\H2\CA*
I p mm'

X jr-. (5)

In practise one may cut off quanta with too short or too long a

delay. We can describe this cut off by a function £(f) which gives
the probability for the detection of the two particles with a delay t.

We write the integral :

oo

J' £(*) e_[1/r_i (t°™-<°m')l tdt
j) HA(a>m-a>m') r]

~ "" l-i(mm-a>m')r- W
J Ç(t)e-tlTdt
0

The function H((xmmi) is calculated in a later section of this paper
for a number of interesting cases. By introducing the abbreviation
xm,m'= (mm—o>mr) x we have the generalized formula of Goertzel
in the following form:

W(kx,k2) £ (At\Hx\ Bm) (Bm\H2\CP) (Al\H1\BJ* (Bm,\H2\Cv)*
ipmm'

Hç(xmm ,n\
1—1xmm

The method of the Racah algebra can now be applied. For an
unpolarized arbitrary correlation we get then :

W(kv k2) E Ikl IP' mi1*2
1

,—=- Yk (fei) • Y~k Ä)- (8)V V 2J
k% " \/2k1+l\/2k2+l klX V k'y ' '
f

The abbreviations I, II, III have the same meaning as in reference8) :

!*• fïK + iE^, «l'(-i)w wd h hW/Lj)
x E{cTmv-m Kl' W Xi)x'-M},

M

IP [/2k2+-l Ef ßLlßh XI)W W(II2k2L'/L21)

x E{CVmw-uK1'^) Xl).ia-M}.
M

T 1 film' nlm'
rrrt,t,_ 2,1 + 1 Qk,ki__ y Irnhß Imkifi tj / \ /q\

y 2 kx + l y 2 k2 + l mm' x %xmm
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We introduce the coefficients :

Ak k
I*> IF- ,_ 1==- (10)*'*s Y2kx+l]/2k2+l

and we write the principle formula neglecting the constant factor
21 + 1,

w(kxk2) EÂkk 3ïlk° i 1i=- Yk (K) Yk"(h) ¦ (ii)£t ]/2kx+l\l2k2+l ' *"

For a general arrangement, illustrated in fig. la, we rewrite formula
(11) by introducing the angles &, cp, 0. By a simple calculation we
get from the spherical triangles in fig. lb the following relations:

«£ (c kx) a cos a cos # cos cp

"£ (c ki) ß cos ß cos # cos(<9—<p)

^ -? 7* \ / =» \ cos® - cos a cos /S

< (c kA (ck2) -= V cos W si^rsIn j (12)

?-9-

Fig. la.
General arrangement for the case of an axial symmetric field (in the direction c).
kx and k2 are the directions of the first and the second ray, n the normal to the

plane defined by kx and k2.

For axial symmetric fields we get :

W(&, cp, 0) Be fcq(l) • e2(2) £ AktK^k^Nk;^ Pki (cos-& cos cp)

x P*° (cos # cos (0— ç.)) e1"*

+ *il2) e2(l) E AKK &£*> N%* Pk;(cos ê cos cp)

xPk}(cos&cos(0 — cp))e-if"f} (13)

2V*1*2 is the normalization factor of the Legendre polynomials and
Ei(k) is the sensitivity of the counter % for the radiation k.
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We can simplify formula (13) if we make the two following
restrictions :

1. We assume ex(l) • e2(2) ex(2) • e2(l) (this means in practise
that the counters are equally sensitive) —or—we assume the
interaction to be pure electric.

2. We assume the interaction to be pure (electric or magnetic)
—or— we take for one of the angles & and cp only the special values
0 and n/2.

If these two conditions are fulfilled only the real part G of the
attenuation factors S enters in the formula and we get :

W(&, cp, 0) 27 AkikGk;k'NlAPk;(cos & cos cp)

x Pkß* (cos & cos (0 — cp)) cos pi ip. (14)

For the evaluation of (14) one has to sum over pi (taking the terms
where pi + 0 twice) and over both kx and k2. Furthermore one has
(3*1** ôkk^ whereas all the other attenuation factors are given in
a later section.

in

A

Fig. lb.
The spherical triangle from which the relations (15) are derived.

Since formula (14) is rather complicated to be used for comparison
with experiments we give here explicite formulae for two special
cases for 0, namely W({rcpn) and W(d-cpn/2). The anisotropy

£ W(&cpn)/W(& cp w/2) —1

may be obtained from these functions.



Measurement of Nuclear Moments of Excited States. 767

For y-radiation with no higher multipole order than quadrupole
we have then :

W(êcpn) a0 + a2 cos2 & cos2 cp + ai cos4 & cos4 cp

+ a6 cos6 & cose cp + as cos8 & cos8 cp (15)

W(& cp n/2) b0 + b2 cos2 # + ò4 cos4 & + b8 cos4 & cos2 cp sin2 99

+ bxo cos6 # cos2 9? sin2 cp + bx6 cos8 & cos4 95 sin4 95 (16)

where the coefficients an and bn are tabulated in table 1 and table 2.
These formulae will be used in the next section to discuss some
special arrangements.

Table 1.

W(êcpn) a0 + a2 cos2# cos2 <p+ai cos4 ê cos4 cp

+ ae cos6 & cos6 q>+ as cos8 # cos8 cp

aa=l + A22 (1/4 + 3/4G22) + M24 + ^42)(-l/8-l/i"5)ö24
+ AU (9/64+5/16 G44 +35/64 G44)

a2 ^22 (-3/2 + 3G22-3/2G22) + (i^+i«) (-9/2)/6/6 G24 + 9/8 ]/Ï5 G24)

+ .444 (-45/16 + 45/8 G44 -5 G44 + 35/8 G44 - 35/16 G44)

a4 ^22 (9/4-3G22 + 3/4G22) + (A2i+Ai2) + 30/2 j/5/6 G24-15/8 j/Ï5 G24)

+ yl44 (555/32-255/8 G44 +195/8 G44 -105/8 G44 +105/32 G44)

«e (A2i + Ai2) (-21/2 I/5/6 G24 + 7/8 ]/Ì5 G24)

+ ^44 (-525/16 +455/8 G44 -35 G44 +105/8 G44 -35/16 G44)

«s ^44 (1225/64-245/8 G44 + 245/16 G44 - 35/8 G44 + 35/64 G44)

6S

1 + ^22

+ AM

A22

+ AU

A22

+ AU

+ AU

2Xa*

Table 2.

IF(# 9p ji/2) b0 + b2 cos2# + 64 cos4# + b8 cos4# cos29? sin2<p

+ &10 cos6# cos2ç> sin2ç>+ 616 cos8# cos49? sin4ç>

1/4- 3/4 G22) + (A2i + Ai2) 1/8 |/Ï5 G24

9/64-5/16 G44+35/64 G44)

3/4+3/4G22) + (^24 + ^l42) {-9/16/15 G24}

45/32+ 5/2 G44 -35/32 G44)

•424 + ^42) 7/16 |/Ï5 G24 + 444 (105/64 - 35/16 G44 + 35/64 G44)

9/4-3 Gf + 3/4G22) + (^24 + ^42) (+9/2 )/5/6 G24 -1/8J/Ï5 G44)

+ 345/32-45/8 G44 -15 G44 +105/8 G44 -105/32 G44)

^24 +^42>(-21/41/5/6 G24 +7/16)/Î5G24)

525/32 +105/8 G44 +105/8 G44 -105/8 G44 +105/32 G44)

1225/64-245/8 G44 +245/16 G44 -35/8 G44 +35/64 G44)
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Besides the case illustrated in figure 1 where the c axis has the
same direction for all the atoms, the case where the field axes are
statistically distributed is also of importance. We get then the
correlation as the average over all cp, &:

W(0)= [W(&cp0)dü. (17)

Physically this corresponds to the case of a crystalline powder. It
can easily be proved that the result of the integration is :

Nkjk* / P£ [cos # cos 9?] P£ [cos & cos (0 — cp)] cos pirp dQ

-2~kl+rokiKPki(coS0). (18)

We can therefore write in this case the perturbed correlation simply
in terms of attenuation factors Gkk

W(0)=2JAkkG**Pk(cos0)
where *

1 + 2J7G*Qkk=_J
2k+l

-ikk

ß-X
(19)

For vanishing interaction the attenuation factors G*1*2 are just
°k,kz' so that the unperturbed correlation is of the well known form:

W(0) E^kkFk(cos0). (20)

For our case we are only interested in y—y correlation. Then we
can get the Akikt easily from the tables of Biedenharn and Rose9).
For pure multipoles we write :

AKki Fkx(LxIxI)FK(L2I2I). (21)

If one of the two radiations is a mixture of two multipole orders Lx
and Lx with the intensity ratio ò2 we get the Akiks from the table
of Biedenharn and Rose :

Akiki [Fki(LxIxI) + ò2FK(Lx' IXI)

-2ôi/(2I + l)(2Lx + 1) (2 Lx' + 1) Gki (Lx Lx' Ix I)]

xFki(L2I2I) (22)

and similar if the other y ray or both are mixed*).

*) Note that ô2 is the intensity ratio in the notation of Ling and Falkoff16)
and different from 9).
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Experimental Arrangements.

Formula (14) of the last section gives the angular correlation for
the case in which external axial symmetric fields are present. The
correlation depends strongly on the orientation of the symmetry
axis with respect to the counter geometry. In this section we will
specialize the formula for several experimentally realizable arrangements.

The attenuation factors G which involve the mechanism and
the strength of interaction will be given in the next section. The
formulae of this section are valid for correlations involving no higher
multipole order than quadrupole and for axially symmetric electric
and magnetic and combined fields. If the interaction is not pure
electric, then the sensitivities of the counters are assumed to be the
same (ex(l) - e2(2) ex(2) ¦ e2(l)).

--. c

Fig. 2.

Diagram of arrangement 1 where the field axis c" lies in the plane (kx, n).

Arrangement 1. In this arrangement (fig. 2) the field axis c lies

in the plane (kx n). The formula for this case can be obtained from
(15) and (16) for cp 0. One obtains :

W(ti) - W(ji/2) S d„ cos™

W(7ij2) S en cos« ê

where the coefficients d„ and e„ are tabulated in table 3.

(23)

Arrangement 2 (fig. 3). Here the ~c axis lies in the plane (kx k2).
The formula for this case can be obtained from (15) and (16) for
# 0. One obtains :

W(7i)-W(tt/2) Zfncos"
W(n/2) Zgncosn<p

where the coefficients /„ and gn are tabulated in table 4.

(24)
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Table 3.

Arrangement 1. W(7i)/W(n/2)-l S dncosnê/2: enoosn»

d0 ^22 (3/2 Gl2) + (A2i + Ai2) (-1/4J/Ï6 G|4) + ^144 (5/8 G44)

d2=A22 (-3/4+ 3G22 -9/4G22) + (A2i+Ai2) (-9/2 j/5/6 G24 + 27/16 yl5 G24)

+ ^44 (-45/32 +45/8 G44 -15/2G44 + 35/8G44 - 35/32 G44)

di A22 (9/4-3GJ2 +3/4Gf) + (^24 + ^42) (30/2 1/5/6 G24 -27/16^ G24)

+ ^444 (+1005/64-255/8 G44 + 425/16 G44 -105/8 G44 +175/64 G44)

d6 (A2i + Ai2) (-21/21/6/6 G24 + 7/8 j/Î6 G24)

+ ^444 (-525/16 +455/8 G44 -35 G44 +105/8 G44 -35/16 G44)

d8 ,444 (1225/64- 245/8 G44 + 245/16 G44 - 35/8 G44 + 35/64 G44)

e0 l + ^22 (1/4-3/4G22) + (A2i+Ai2) l/8(/i5 G24

+ ^44 (9/64-5/16G44 + 35/64 G44)

e2 ^22 (-3/4+3/4G22) + (A2l + Ai2) {-9/161/Ï5 G224}

+ t144 (-45/32 + 5/2 G44 - 35/32 G44)

e4 (^24 + ^42) 7/16 i/l5 G24 + ,444 (105/64-35/16G44 + 35/64 G44)

Table 4.

Arrangement 2. W{n)/W(nf2)-1 27 /„ coancpji: gn cosncp

/„ =A22 (3/4+3/4G22) + M24+-442) (-1/8 j/Ï5 G24)

+ ^44 (-15/64 + 5/16 G44 +35/64 G44)

/2 =^22 (-15/4+6G22-9/4G22) + (^24 + ^[42) (-15/4/5/6 G24 +13/16 )/Ï5 G24)

+ ^444 (45/16 -15/8 G44 - 25/8 G44 + 35/8 G44 - 35/16 G44)

/4 .422 (9/2-6 G22 +3/2 Gf) + (^l24 + ^42) (57/41/5/6 G24 -25/16yÏ5 G224)

+ ^44 (-475/64+50/8G44 +115/16 G44 -70/8 G44 +175/64 G44)

/6 (A2t + Ai2) (-42/41/5/6 G24 +14/16 VVE G24)

+ yl44 (+175/32 - 35/8 G44 - 35/8 G44 + 35/8 G44 - 35/32 G44)

Sf0 1-1/2 ^22+3/8^144

Sr2 ^22 (9/4-3 G22 +3/4G22) + (A2i + Ai2) (-3/4^5/6 G24 + 5/161/Ï5 G24)

+ .444 (-45/8 + 15/2 G44 -5/8 G44)

?4 As (-9/4+ 3 G22 - 3/4 G22) + (^24 + Ai2) (3/4 /5/6 G24 - 5/16 ]/Ï5 G24)

+ ^M (1585/64-305/8 G44 +275/16 G44 -35/8 G44 +35/64 G44)

g6 Au (-1225/32+245/4 G44 - 245/8 G44 + 35/4 G434 - 35/32 G44)

5r8 Au (1225/64- 245/8 G44 + 245/16 G44 - 35/8 G44 + 35/64 G44)
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Arrangement 3. In this arrangement the (F axis is parallel to the
normal to the plane of the two counters (& n/2). For this case
we give not only the anisotropy but the whole correlation function.

We write it in the form :

where

B2

B±

W(0) 1 + B2 cos 2 0 + B4 cos 4 0

-1 + 1/4^+9/64^ (3/4 G? Ä22 + 5/16 G" ^44

-J/Ï5/8 Gf (Au + Ai2)}
1 r>nnA 044

1 +1/4 ^l22 + 9/64 At 35/64 Gf Au.

(25)

(26)

Fig. 3.

Diagram of arrangement 2 where the field axis ~c lies in the plane of the
two radiations (kx, k2).

Arrangement 4. In this arrangement we measure only coincidences
between quanta emitted in opposite directions (0 n). For the
coincidence rate W„(d) one gets an expecially simple expression
depending on the angle & :

wn(&) Ea«cosn& (27)

where the coefficients an are tabulated in table 1.

Arrangement 5. Here we treat the case where the orientations of
the ~c axis in the source are statistically distributed. As an example
we mention angular correlation measurements in crystalline powder.
If the unperturbed correlation is given by

W(0)=E^kkPk(cos0) (28)

one obtains the influenced correlation by multiplying each term
with an attenuation factor :

W(0) 2JAkkG**Pk(cos0). (29)
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Attenuation Factors.

The formulae of the last section were given in terms of the
attenuation factors G. These factors depend on the type of
interaction, the strength of the interaction, the spin of the excitet state
and on the coincidence measurement method. The attenuation
factors are defined by formula (9) and (19).

G^ Re Sk^= 1/2^+1/2^+1.2JC^^C^Hi(xmm,) (9')

nkk _ _~2k+l

il m' /-»/ m'
¦i_ß

+ '.

r 7.

1 + 227 G?kk

I' 1

(19')

For magnetic and electric fields with axial symmetry the hyperfine
splitting (hfs) is given by

/17? eQ dEz 3m2-I(I+l) TZr /oA^AEm 2~-jf- (2I-l)I +9MkIHm. (30)

The m are magnetic quantum numbers. We introduce x and y which
are quantities measuring the strength of interaction and are defined
in the following way :

eQ dEz
_

3

2H dz (21-1)1 I integer

x STT Xz- —n—TTT x I half integer2% dz (21-1)1 &

for quadrupole
interaction (31)

y —X - f for magnetic interaction

Q: electric quadrupole moment of the excited level,

g/xkI fx: magnetic moment of the excited level,
dEJdz : electric field gradient with respect to the symmetry axis,
H: magnetic field,
t: mean life of the excited state.

We can write the attenuation factors in the following general
manner :

or* - \e^ [t+i^u-w H^mx+™> *. *)
m r

+ l + (mì-py)2 H{~mX - M> ^] " (32)
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For negligible interaction the following relation holds :

Gk^=ôkk_.f

Formula (32) is valid for ~cs ~Cq, i. e. the axis of the magnetic field
is parallel to the symmetry axis of the crystal. For the special case
that only one interaction (H or Q) is present one gets the attenuation
factors simply by setting x 0 or y 0.

For pure magnetic interaction formula (32) simplifies to :

G«2=^ft^X-X. (32a)f ^*2 l + (fxy)2 K '

For powder sources (arrangement 5) when only a magnetic or an
electric field is present*), the attenuation factors Gkk are given by :

Gkk ESmTrj^H(mxJ,n). (33)

(For magnetic interaction replace a: by y).

The coefficients S are sums over Clebsch-Gordan coefficients (9)
and are tabulated for the spin values 1, 3/2, 2, 5/2, 3 and 7/2 and
all interesting cases in table 5.

The function H defined by formula (6) describes the influence of
the coincidence measurement method and depends on the finite
resolving time xR of the coincidence circuit, on the delay rD and
on the nuclear lifetime x of the intermediate state. As variables we
chose the ratios

£ tä/t and n tD/x.

For the most important cases the function H is given as follows :

A. Without delay and with infinite resolving time.

rj 0, | 0

H 1 (34)

*) The attenuation factors for powder sources where in addition an axial
magnetic field is present is not given in this paper. This experiment which allows
the determination of fi and Q in one experiment without creating a single crystal
is of certain importance and will be treated and published later.
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Table 5: s£ *' and 8kk.

The attenuation factors G x a and G for magnetic and electric interaction may be obtained from

this table by introducing the here given coefficients S^k and S1^ in formulae (32) and (33).

\. m 0 1 2 3 4 5 6 7 8 9

Cr22
bmX

1 1

3

2
1

2
1

7

6

7

5

2

2

T
5

7

3 2

42

15

42

25
42

7

2

5

42

16

42
21
42

C22bm2

1 1

3

2
1

2
3

7

4

y
5 9

14

5

3 6

21

10

21

5

21

7

2

20

42
15

42

7

42

ri44
bmX

2 6

i
1

7

5
2~

5

7

2

7

3
15

77

32
77

30
77

7

2

27

77

15

77

35
77

ait*»2

2 4

7

3
7'

5

'2
5

14
9

14

3 20

77

3

77

54
77

7

2

48

154

1

154

105

154

ç44°»3

2 1

5

2
1

3 2

11

9

11
7

2
4

11

7

11
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Table 5 continued.
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I \ 0 1 2 3 4 5 6 7 8 9

(j44°mi

2 1

5

2
1

3
5

11

6

11

7

2

15

22
7

22

o24

2
5

vT
5

5
2~

Yio
'

7

Yw
7

3 Zll/Ï
7 Ml

¦±JT
7 V IX Ai/I7 '11

7

2
=?lX
14 K li 14 I'll 14 I'll

o24
°m2

2 yVa- fvr
5 li^ 14 'ö

3 Mï M 7 I'll
7

2 14 I 11 14 I'll 14 K 11

çr22
bm

1
5

2

5

3

2

1

5

4

5

2
13

35
2

35

12

35

8

35

5

2

7

35
13

35
10

35

5

35

3
33

105

2

105

15

105

20
105

25

105

10

105

7

2

42

210
50

210
32

210

72

210

14

210

Cr44
bm

2
29

63
12
63

16

63

6

63

5

2

7

63

15

63

18

63

23
63

3
187

693

30

693
92
693

6

693

60

693

192

693

126

693

7

2

77

693

102

693
135
693

127

693
105

693

147

693



776 Kurt Alder, H. Albers-Schönberg, Ernst Heer and T. B. Novey.

B. Without delay and with finite resolving time.

n 0, 1 + 0

Hl-e~'(cosz^-z8mz|) /Q_>
: =| \Ó0Ì
1-e q

C. With delay and with finite resolving time. (The sensitivities
of the counters are assumed to bee the same).

a) »?<!
2-eAi+n) (cogz(Ç + r])-zsinz(f + ?;))-e~(f~',)(cos z (t,-r,)-z sin z (£-rj)) ,Qa,

b) »? >_

rj (cos z (jj-|)-z sin z (??-f))-e~2* (cos z (j? + f)-z sina (jj + I)) /q7>« - x _ e_2y
(3 0

D. With delay and a very short resolving time.

!<1, _ <»7

H (l+22)cos^ (38)

In the formulae (34) to (38) the varable z stands for (mx + piy) or
(mx—uy).

Discussion of experimental methods.

In the previous sections it was shown that angular correlation
measurement is able to give information about nuclear moments
of short lived excited states. From the measurement we get the
product of the interaction energy and the nuclear lifetime. As in
the region in question (10~9 sec to 10~5 sec) lifetimes can be measured
with good accuracy, the interaction energy can be calculated. From
this we get the moment when the interacting field strength is known.
For the magnetic case magnetic fields can be measured accurately
and it is therefore possible to obtain the g factor and therefore the
magnetic moment with an error of only a few percent. As will be
deduced in the appendix the measurement of the sign of the
magnetic moment can also be carried out very easily. The electric case
is much more difficult. The field strength that enters into the
interaction energy is the gradient of the electric crystalline field which
in general can be calculated only with great difficulty. It would
therefore be interesting to measure the quadrupole coupling not in
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crystals but in atoms or molecules for which rather good calculations
are available. The quadrupole moment may however be obtained
by comparison of the measured quadrupole coupling which that of
a stable nucleus, the latter being obtained from a nuclear induction
experiment. Any calculation or measurement of the electric field
gradient will in general be complicated by the fact that the
interaction is measured in a state following a radioactive decay. The

w(*)-*(h)
A

w(y2)

x=l2

x=7b

XslB

x=2.0

Fig. 4.

This figure illustrates the arrangement 1 in the case of Cd111. The region of x has
been chosen so that the curves may be compared with the recently reported
experimental results 4)6). The curves are corrected for finite resolving time (f 2,84)

but not for finite solid angle.

recoil energy may remove the active atom from a lattice position
and radiations may disturb the electronic shell and may cause
additional effects.

The applicability of the described method is limited in several
directions. In principle the investigated state need not be the
intermediate state of a y—y cascade. The theory may be expanded to
ß—y, oi—y and e~—y correlation e.g., although the experiments are
much more difficult. Furthermore the method may be applied to
measurements of angular distributions in nuclear reactions.
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Another restriction is that the lifetime of the intermediate state
must lie between 10-9 sec and 10~5 sec. The lower limit is given by
available field strengths whereas the upper limit will be determined
by small disturbing effects present in any source.

For any accurate determination of the moments the source must
fulfill some additional conditions. For the measurement of the
magnetic moment there should be no quadrupole coupling present.
As it was pointed out in a previous article5) cubic crystalline sources,

w(r)-w(y2)
A

w(V2)

X?12

-U
x lb

20

Fig. 5.

Same as fig. 4 but for arrangement 2.

solutions*) and melts are in general suited for this purpose. For the
measurement of the electric quadrupole coupling one best uses a

very pure single crystal of axial symmetry. The radioactive atoms
must sit in regular lattice positions. For both cases diamagnetic
compounds should be used to avoid disturbance by the (IJ) coupling.

We have then three methods for the determination of x (and y) :

1. We keep the field, delay and resolving time constant and vary

*) See also: A. Abragam and E.V. Pound, to be. pubi, and H. Albers-
Schoenberg, E. Heer, F. Gimmi und T. B. Novey, Helv. Phys. Acta, 26, 599

(1953).
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the angles & and cp. 2. We keep the field and the angles &, cp

constant and vary the delay or the resolving time ; and 3. we keep &, cp

and the delay and resolving time constant and vary the field. For
the determination of the magnetic moment possibilities 2. and 3. with
the field axis perpendicular to the two gammas are best suited.
Since the electric field gradient can not be varied easily one must
vary & and cp for the measurement of the quadrupole coupling. In

or

electric

inleraclion
magnetic

nterac/ion

0.05

WO0.0

Fig. 6.

Illustration of arrangement 3 where the symmetry axis of the field is perpendicular
to the plane of the two counters in the case of Cd111. The disturbed a.c. is written

as W(@) 1 + B2 cos 20. The field may either be pure electric or magnetic.

any case it is preferable to measure the attenuation as a function
of one variable and to compare with the theory by the method of
least square fit. In this way one can make sure that no other disturbing

interaction is present.

With regard to the coincidence measurement method, the case
is simplest without delay and with a finite resolving time. If the
interaction is small it is however preferable to employ a delay of the
order of the lifetime. One measures then only the nuclei that have
been exposed to the disturbing field for a long time and the effects
are larger (see fig. 8).

To complete this section we will illustrate some of the results of
this paper for the well known case of Cd111. The y—y cascade is a

Ml^ ~_2~ ^~e_ ^ transition. The mixing ratio d has been deter-
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«¦=0

«• 05

>r=I

»•=1.5

x 2,0

*=5

00] Ol 1.0 10.0

Fig. 7.

Same as fig. 6 but for combined parallel magnetic and electric field for several
values of the electric interaction x. B2 is given as a function of the magnetic

interaction y.

•"Mr

00

Fig. 8.

Attenuation factor G22 for polycrystalline powder sources for / 5/2 as a function
of the strength of interaction x. The curves A, B, G and D show the influence of
finite resolving time and delay. The values used are: A: | oo, rj 0 ;

B:£ l,ri 0; C:£ 1,t/ 1; D:£<1,jj 1.
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mined by angular correlation methods1) to be about —0-096. From
the table of Biedenharn and Rose one gets for the coefficients

_2 —0-1429, A2i —0-1650, Ai2 AM 0 if we neglect terms
in Ô2.

In figure 4 and 5 we have illustrated experimental arrangement
1 and 2. The recently published experimental results of the Zürich
group4)2) are in good agreement with these curves. Figure 6 and 7

show the important case where the symmetry axis is perpendicular
to the two rays for pure magnetic, pure electric and combined
magnetic and electric interaction. The rise of the anisotropy for
small H (fig. 7) is characteristic for quadrupole interaction. This
figure illustrates the possibility for a determination of pi and Q in
one experiment7). Figures 4 to 7 are corrected for the finite resolving
time (I 2,84). In figure 8 the influence of the coincidence measurement

method is illustrated. The attenuation factor G for a crystalline
powder source is given as a function of x.

These curves show the sensitivity of the various methods of
detecting and measuring the quadrupole interaction and allow one
to select the best procedure to be used in any particular case.

We are grateful to Prof. Sciierrer for his continued encouragement

and support of our work. We also thank O. Braun for help
with many laborious calculations.

APPENDIX.

Some special theoretical problems.

1. Symmetry behaviour.

In the preceding sections the correlation function was partly
written as a series of Legendre polynominals and partly as a series
in cos 2n0. The form was chosen according to the symmetry of
the problem. When the correlation function depends only on the
angle 0 between the two counters and not on their orientation in
space then the representation in Legendre polynominals is well
suited. If on the other hand the correlation function is invariant on
rotation of the counting system around a symmetry axis the
adequate representation is that in cos 2 n 0. If there is no symmetry
behaviour at all, the correlation function is very complicated and
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is best expressed in spherical harmonics. For practical purpose it is
then better not to calculate the whole correlation function but only
the value for a fixed angle 0 (0 jt or 0 n/2).

2. Vector model.

For magnetic interaction the formula for the influenced
correlation can be obtained easily by semiclassical procedure. An applied
magnetic field H is equivalent to a Larmor precession coL g pik H/%
of the magnetic moment of the nucleus around the field axis. By
transforming to the rotating system we get

W =JW(&X, cpx, &a, cp2 + cot) C(t) e-i/r dt

if W({rxcpx &2cp2) is the undisturbed correlation. For quadrupole
interaction it is more complicated since we have not only one but a
whole spectrum of precession frequencies. For I 5/2 e.g. we have
the frequencies 4- co, 4- 2 co, 4-. 3 co.

3. Sign of the moment.

The formulae of this paper are valid for equally sensitive counters.

If the sensitivities of the two counters for the two y-rays are
not equal, the formulae for the magnetic interaction are more
complicated. The attenuation factors are then given by the complex
expression :

Gk,kz=i \ 1 • ei(l) «a (2)- Ei(2)e2(l) /xy_

l + (/xy)2 e1(l)e2(2) + e1(2)e2(l) \ + (p.y)

where et(k) is the sensitivity of the counter i for the radiation k.

Then the correlation W(kx,k2) and W(kx,—fe2) are not the same
and from their difference the sign of the magnetic moment can be

obtained3).

In the case of the quadrupole interaction the attenuation factors
are independent of the sensitivity of the counters and always real.
Therefore the determination of the sign of the quadrupole
interaction is not possible in the same way.
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4. Angular correlation in fields without symmetry axis

This case includes crystals without symmetry axis, axial magnetic
and axial electric fields which are not parallel and crystalline powder
plus magnetic axial field. The angular correlation can even in this
case be written in terms of attenuation factors Gklk* :

/*i ."2

W(kxk2) E AKK Gk;X Y£(kx) Y£(fca).

To calculate the attenuation factors one must know the hfs and the
admixture of different magnetic quantum numbers. We hope that
in a next paper more quantitative results can be discussed.

5. (IJ) coupling.

The interaction between the nucleus and the electronic shell of
the active atom may in principle be electric or magnetic. For the
attenuation factors Gkk one gets :

Qkk _ y (2F+1)(2F' + 1) [W(I J k FjF'IW
1 + (coff,t)2

if the disturbed correlation is :

W(0) 2JAkkGkkPk(cos0).
k

In the magnetic case the hfs coFF, is given by

1

uFF' ¦ AS[F(F+1)-F'(F'+1)]

where As is a constant depending on the electron configuration and
is tabulated e.g. in Kopfermann14). In the electric case the hfs coFF,
is given by

m«r
_ ^ ._- [{P(F+1) - F'(F'+1)}

x {F(F+1) +F'(F' + 1) -21(1 + 1) -2 J(J + 1) + 1}].

If both interactions are present coFF, is simply the sum of the two
expressions.
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A work of similar nature which comprises a natural complement
to this paper and which treats especially the effect of Brownian
motion in liquid sources has been completed by Abragam and
Pound, to be published in the near future. We thank Prof. Pound
for communicating this work to us.
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