Über die absolute Intensität der Zink-Resonanzlinie 3076 Å.E. und die Lebensdauer des 2 3P1-Zustandes von Zink

Autor(en): Billeter, W.

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 7 (1934)

Heft V

PDF erstellt am: 27.04.2024

Persistenter Link: https://doi.org/10.5169/seals-110383

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

Über die absolute Intensität der Zink-Resonanzlinie 3076 Å.E. und die Lebensdauer des 2 ${}^{3}P_{1}$ -Zustandes von Zink

von W. Billeter.

(16. V. 34.)

Zusammenfassung. Aus der Grösse der Gesamtabsorption bei verschiedenen Dampfdrucken wird die absolute Intensität der Zn-Resonanzlinie 3076 Å.E. und die Lebensdauer des 2³P₁-Zustandes bestimmt. Für die absolute Intensität ergibt sich der Wert $f = 1, 6_2 \cdot 10^{-4}$ und für die Lebensdauer der verhältnismässig grosse Wert $T = 2, 6_4 \cdot 10^{-5}$ sec.

§ 1. Berechnung des Absorptionskoeffizienten.

Aus der Grösse der Gesamtabsorption einer Spektrallinie kann bekanntlich der Absorptionskoeffizient k_{λ_0} in der Linienmitte bei unendlich dünner absorbierender Schicht bestimmt werden. Die Methode ist durch die Untersuchungen von v. MALINOWSKI¹), ORTHMANN²), SCHEIN³) und KUNZE⁴) an der Hg-Resonanzlinie 2537 Å. E. ausgearbeitet worden. Für die entsprechende Zn-Resonanzlinie 3076 Å. E. (1 $S - 2 {}^{3}P_{1}$) konnte nun anhand von Versuchen, über die in einer früheren Arbeit⁵) bereits berichtet worden ist, ebenfalls k_{λ_0} bestimmt werden.

Die bei jenen Versuchen verwendete Anordnung bestand im wesentlichen aus einer mit Zn-Dampf gefüllten Resonanzlampe, deren Strahlung durch ein ebenfalls Zn-Dampf enthaltendes Absorptionsgefäss von 2,75 cm Länge ging. Das Absorptionsgefäss befand sich zwischen den Polschuhen eines Elektromagneten, der ein zum Strahlengang senkrecht gerichtetes Magnetfeld erzeugte. Die durch das Absorptionsgefäss hindurch gegangene Strahlung fiel schliesslich durch einen ultraviolettdurchlässigen Nicol auf eine Photozelle zur Intensitätsmessung; dabei war der Nicol so orientiert, dass nur das σ -Licht zur Beobachtung gelangte.

¹) A. v. MALINOWSKI, Ann. d. Phys. 44, p. 935, 1914.

²) W. ORTHMANN, Ann. d. Phys. 78, p. 601, 1925.

³) M. SCHEIN, Ann. d. Phys. **85**, p. 257, 1928, oder Helv. Phys. Acta **2**, Suppl. I, 1929.

⁴) P. KUNZE, Ann. d. Phys. 85, p. 1013, 1928.

⁵) W. BILLETER, Helv. Phys. Acta 7, p. 413, 1934.

Zur Bestimmung der Gesamtabsorption wurden zwei Intensitäten gemessen, nämlich erstens die Intensität J der Resonanzstrahlung nach dem Durchgang durch das Absorptionsgefäss beim Magnetfelde null, und zweitens die Intensität J_0 bei einer so hohen Feldstärke, dass infolge der grossen Zeeman-Aufspaltung keine Absorption mehr vorhanden war. Wie früher ausgeführt wurde, besitzt diese Methode der J_0 -Bestimmung durch Aufspalten der Absorptionslinie den Vorteil, dass das Absorptionsgefäss nicht aus dem Strahlengang herausgeklappt zu werden braucht. Naturgemäss ist das Verfahren nur dank der einfachen Struktur¹) der Zn-Linie anwendbar.

Es wurden nun bei verschiedenen Dampfdrucken im Absorptionsgefäss die Intensitäten J und J_0 gemessen. In Tab. 1 sind

J/J_0	Gesamt- absorption in %	Zn-Dampf in Absorption					
		$T_{\rm abs.}$	$p\cdot 10^2$ mm Hg	<i>ų</i> · 10 ⁻ 4 cm	N · 10-14	$\left \begin{array}{c} \frac{N}{\overline{q}} \cdot 10^{-9} \end{array} \right $	kλo
0,908	9,2	583°	0,20	4,34	0,33	0,77	0,048
0,782	21,8	606°	0,55	4,43	0,88	1,99	0,131
0,722	27,8	6130	0,71	4,46	1,13	2,53	0,175
0,566	43,4	623°	1,08	4,49	1,69	3,75	0,308
0,428	57,2	6350	1,75	4,53	2,68	5,91	0,473
0,415	58,5	635^{0}	1,75	4,53	2,68	5,91	0,492
0,392	60,8	6370	1,88	4,54	2,87	6,32	0,530
0,31 ₀	69,0	643°	2,44	4,56	3,69	8,09	0,682
0,274	72,6	646°	2,76	4,57	4,16	9,08	0,770
0,200	80,0	6530	3,65	4,60	5,44	11,82	$1,00_{5}$
0,16 ₂	83,8	658°	4,25	4,62	6,28	13,61	1,19

Tabelle 1.

die Versuchsergebnisse von 11 Messreihen zusammengestellt. In der ersten Kolonne ist das Verhältnis J/J_0 und in der zweiten die dazu gehörige Gesamtabsorption in Prozenten angegeben. Die dritte Kolonne enthält die absoluten Temperaturen im Absorptionsgefäss, die mit Hilfe eines Platin-Platinrhodium-Thermoelementes gemessen wurden. Die in der vierten Kolonne angeführten Sättigungsdrucke p wurden zu den entsprechenden Temperaturen den Tabellen von LANDOLT und BÖRNSTEIN, 5. Auflage, II. Bd., S. 1338 und I. Ergänzungsbd., S. 723 entnommen. Kolonne fünf enthält die Werte \bar{q} der mittleren thermischen Geschwindigkeiten der absorbierenden Atome, die aus den Tempera-

¹) Vgl. W. BILLETER, a. a. O.

turen in der dritten Kolonne errechnet wurden. Für die verschiedenen Drucke p wurden ferner die zugehörigen Werte von N, d. h. der Anzahl der Atome pro cm³ des absorbierenden Dampfes, ausgerechnet und in die sechste Kolonne eingetragen. Wie später in § 2 aus Gleichung (3) folgen wird, hängt die Grösse der Absorption vom Verhältnis $\frac{N}{\overline{q}}$ ab, dessen Werte in der zweitletzten Kolonne zusammengestellt sind. Der Zusammenhang zwischen der Gesamtabsorption (zweite Kolonne) und dem Verhältnis $\frac{N}{\overline{q}}$ ist ausserdem in Fig. 1 veranschaulicht.

Zur Berechnung von k_{λ_0} aus der Gesamtabsorption wurde die Formel von SCHEIN¹) verwendet:

$$J/J_{0} = 1 - \frac{k_{\lambda_{0}} \cdot l}{1! \sqrt{1 + \left(\frac{\Delta \lambda_{1}}{\Delta \lambda}\right)^{2}}} + \dots + \frac{(-1)^{n} \cdot k_{\lambda_{0}}^{n} \cdot l^{n}}{n! \sqrt{1 + n\left(\frac{\Delta \lambda_{1}}{\Delta \lambda}\right)^{2}}} \cdot$$
(1)

Darin bedeutet: l die Dicke der absorbierenden Dampfschicht, $\Delta \lambda$ die Halbwertbreite der Absorptionslinie für die unendlich dünne Schicht und $\Delta \lambda_1$ die wirkliche Halbwertbreite der Emissionslinie, während k_{λ_0} im vorliegenden Falle unbekannt ist. Die Dicke

¹) M. SCHEIN, a. a. O.

W. Billeter.

der absorbierenden Dampfschicht ist zu l = 2,75 cm bestimmt worden. Die nur durch den Dopplereffekt bedingte Halbwertbreite $\Delta \lambda$ der Absorptionslinie für die unendlich dünne Schicht ist durch die Formel

$$\Delta \lambda = 3,581 \cdot 10^{-7} \lambda_0 \cdot \left[\sqrt{\frac{T}{M}} \right]$$

gegeben¹), wobei^{\cdot} T die absolute Temperatur, M das Molekulargewicht und λ_0 die Wellenlänge der Linienmitte bedeuten. Da somit die Halbwertbreite nur mit der Wurzel aus der absoluten Temperatur ansteigt, lässt sich der relativ kleine Temperaturunterschied von maximal 65° zwischen Emissions- und Absorptionsgefäss und der dadurch bedingte Unterschied der Linienbreiten vernachlässigen. Dagegen kann die Emissionslinie bei endlicher Dicke der emittierenden Schicht infolge von Selbstabsorption eine Vergrösserung der Halbwertbreite erleiden, wie es durch v. Malinowski²) berechnet worden ist. Messungen der Gesamtabsorption bei verschiedenen Drucken im Absorptionsgefäss zeigten jedoch, dass der Absorptionskoeffizient der Linie ausserordentlich klein war, und eine Überschlagsrechnung ergab, dass bei dem verwendeten Zn-Dampfdruck von $p = 0.3 \cdot 10^{-2}$ mm Hg $(T = 593^{\circ})$ im Emissionsgefäss die Selbstabsorption sicher kleiner als 3% der Gesamtintensität der Linie sein musste³). Es konnte somit auch von einer Verbreiterung der Linie durch Selbstabsorption abgesehen werden, d. h. mit unendlich dünner emittierender Schicht gerechnet werden. Da deshalb $\frac{\Delta \lambda_1}{\Delta \lambda} = 1$ zu setzen ist, vereinfacht sich die Entwicklung (1) zu

$$J/J_{0} = 1 - \frac{k_{\lambda_{0}} \cdot l}{1! \sqrt{2}} + \frac{k_{\lambda_{0}}^{2} \cdot l^{2}}{2! \sqrt{3}} + \dots + \frac{(-1)^{n} \cdot k_{\lambda_{0}}^{n} \cdot l^{n}}{n! \sqrt{1+n}} \cdot$$
(2)

Die Zulässigkeit dieser Annahme wurde ausserdem durch Kontrollversuche bei verschiedenen Temperaturen im Emissionsgefäss bestätigt⁴).

¹) Für eine Temperatur von beispielsweise 623^o abs. des Absorptionsgefässes ergibt sich darnach bei der Zn-Resonanzlinie 3076 Å.E. die Halbwertbreite $\Delta \lambda$ zu 3,40·10⁻³ Å.E.

²) A. v. MALINOWSKI, a. a. O.

³) Bei der entsprechenden Hg-Resonanzlinie 2537 Å. E. musste die Halbwertbreite der Emissionslinie korrigiert werden (vgl. M. SCHEIN, a. a. O.), weil der Absorptionskoeffizient dieser Linie sehr viel grösser ist.

⁴) W. BILLETER, a. a. O.

Die durch die Entwicklung (2) dargestellte Beziehung zwischen J/J_0 und k_{j_0} wurde graphisch dargestellt (Fig. 2). Aus der Kurve der Fig. 2 liess sich somit zu jedem gemessenen Intensitätsverhältnis J/J_0 der entsprechende Wert von k_{λ_0} ablesen. Die letzte Kolonne der Tab. 1 zeigt die so ermittelten k_{λ_0} -Werte. Diese wurden nun in Fig. 3 als Funktion des Verhältnisses $\frac{N}{\overline{q}}$ (siebente Kolonne in Tab. 1) aufgetragen.

Wie aus Fig. 3 ersichtlich ist, liegen die k_{λ_o} -Werte mit befriedigender Annäherung auf einer Geraden; die noch vorhandene

 k_{λ_0} in Abhängigkeit des im Versuche gemessenen Verhältnisses J/J_0 .

Streuung ist durch die Versuchsfehler bedingt. Insbesondere ist die relativ grosse Abweichung der drei tiefsten Punkte durch die Ungenauigkeit in der Bestimmung der bei tiefen Drucken bereits sehr kleinen Gesamtabsorption verursacht; sie werden aus diesem Grunde bei den weiteren Berechnungen von Mittelwerten weggelassen. Um den Absorptionskoeffizienten auf den einheitlichen Druck von $1 \cdot 10^{-2}$ mm Hg (entsprechend $\frac{N}{\overline{q}} = 3,5 \cdot 10^9$) zu reduzieren, wurden jeweils die Verhältnisse $\frac{k_{\lambda_0}}{p \cdot 10^2}$ gebildet. Als Mittelwert ergab sich aus diesen Zahlen für den Absorptionskoeffizienten in der Linienmitte k_{λ_0} , d. h. für den maximalen Absorptionskoeffizienten der Zn-Resonanzlinie 3076 Å.E. beim Zn-Dampfdruck $1\cdot 10^{-2}~{\rm mm~Hg}$

$$k_{z_0} = 0,27_9 \pm 0,003$$
 .

Hierbei ist 0,003 der wahrscheinliche Fehler, wie er sich aus den so berechneten Vergleichswerten ergibt. Für die entsprechende Hg-Resonanzlinie 2537 Å.E. ist von Kunze¹) bei einem Drucke von $1 \cdot 10^{-3}$ mm Hg der maximale Absorptionskoeffizient k_{2} zu

4,0 bestimmt worden. Extrapoliert man den vorliegenden k_{λ_0} -Wert der Zn-Resonanzlinie 3076 Å.E. auf denselben Dampfdruck, so ergibt sich $k_{\lambda_0} = 0,028$, also ein rund 150 mal kleinerer Wert des Absorptionskoeffizienten als bei der Hg-Linie 2537 Å.E.

§ 2. Berechnung der absoluten Intensität.

Die Kenntnis des maximalen Absorptionskoeffizienten k_{λ_0} der Zn-Resonanzlinie 3076 Å.E. (1 $S - 2 {}^{3}P_1$) gestattet, ihre absolute Intensität zu berechnen. Die absolute Intensität einer Linie ist definiert als

$$f = \frac{\mathfrak{N}}{N_i}$$

¹) P. KUNZE, a. a. O.

Darin bedeuten: \mathfrak{A} die Zahl der Dispersionselektronen nach der klassischen Dispersionstheorie und N_i die Anzahl der Atome pro cm³ im untern Zustand der Linie, wofür bei einer Resonanzlinie mit sehr weitgehender Annäherung die Gesamtzahl N der Atome pro cm³ genommen werden darf¹). Aus der absoluten Intensität der Linie kann weiter die Lebensdauer des 2 ${}^{3}P_{1}$ -Zustandes bestimmt werden, was jedoch erst in § 3 geschehen soll.

Nach den Berechnungen von LADENBURG¹), den Untersuchungen von KOPFERMANN und TIETZE²) an Hg und denjenigen von ZEHDEN³) an Na gilt für *f* allgemein der Ausdruck

$$f = rac{\overline{q} \cdot k_{\lambda_{\mathbf{0}}}}{2 \cdot rac{e^2}{m \cdot c} \cdot \lambda_{\mathbf{0}} \cdot N} \; .$$

Darin bedeutet: \bar{q} die mittlere thermische Geschwindigkeit der absorbierenden Atome, λ_0 die Wellenlänge der Spektrallinie, e die Ladung, m die Masse des Elektrons und c die Lichtgeschwindigkeit. Zur Ermittlung der absoluten Intensität der Zn-Resonanzlinie 3076 Å.E. wurde durch die acht Punkte der Fig. 3 (oder Tab. 1), die zu Dampfdrucken über $1 \cdot 10^{-2}$ mm Hg gehören, eine Gerade gelegt, deren Verlauf punktiert eingezeichnet ist. Diese Gerade entspricht einem Wert der absoluten Intensität der Zn-Resonanzlinie 3076 Å.E. von

$$f = 1, 6_2 \cdot 10^{-4}.$$

§ 3. Berechnung der Übergangswahrscheinlichkeit und der Lebensdauer.

Aus f ist zunächst die Übergangswahrscheinlichkeit zu berechnen. Der Zusammenhäng zwischen der absoluten Intensität f_{kj} einer Spektrallinie und der Übergangswahrscheinlichkeit A_{kj} des betreffenden Quantensprunges wird von LADENBURG¹) zu

$$f_{kj} = \frac{g_k}{g_j} \cdot \frac{m \cdot c^3}{8 \pi^2 \cdot e^2 \cdot v_{jk}^2} \cdot A_{kj} = \frac{g_k}{g_j} \cdot \frac{\tau}{3} \cdot A_{kj}$$
(3)

angegeben. Darin sind g_k und g_j die statistischen Gewichte der

¹) R. LADENBURG, Zeitschr. f. Phys. 4, p. 451, 1921; Verh. d. D. Phys. Ges. 16, p. 765, 1914.

²) H. KOPFERMANN und W. TIETZE, Zeitschr. f. Phys. 56, p. 604, 1929.

³) W. ZEHDEN, Zeitschr. f. Phys. 86, p. 555, 1933.

W. Billeter.

beiden Zustände k und j, v_{jk} bedeutet die Frequenz der Spektrallinie und τ die Abklingungszeit des klassischen Oszillators von der Frequenz v_{jk} . Auf den vorliegenden Fall des 2 ${}^{3}P_{1}$ -Zustandes des Zn-Atoms angewendet, ist in dieser Formel $f_{kj} = f$ und $\frac{g_{k}}{g_{j}} = 3$ zu setzen. Damit errechnet sich für die Übergangswahrscheinlichkeit der Wert

$$A_{\,k\,j}\,{=}\,3,\!7_8\cdot10^4~{\rm sec^{-1}}.$$

Da vom 2 ${}^{3}P_{1}$ -Zustand des Zn-Atoms nur ein einziger Übergang möglich ist, nämlich derjenige der Linie 3076 Å.E., so ergibt sich die mittlere natürliche Lebensdauer des 2 ${}^{3}P_{1}$ -Zustandes zu:

$$T = \frac{1}{A_{kj}} = 2,6_4 \cdot 10^{-5} \text{ sec.}$$

Die Kleinheit der so ermittelten Übergangswahrscheinlichkeit der Zn-Resonanzlinie 3076 Å.E. erklärt nun offenbar die in den Versuchen beobachtete geringe Intensität der Resonanzstrahlung. Schon PONOMAREV und TERENIN¹) waren genötigt, für den photographischen Nachweis der Zn-Resonanzstrahlung sehr grosse Belichtungszeiten²) anzuwenden. Ebenso stimmt die von Soleillet³) gegebene Abschätzung der Lebensdauer zu $T \approx 1 \cdot 10^{-5}$ sec grössenordnungsmässig mit dem vorliegenden Resultat überein. Bekanntlich liefert die von Soleillet verwendete Methode der Depolarisation gerade wegen der grossen Lebensdauer keine zuverlässigen Resultate⁴).

Hingegen verspricht eine Bestimmung der Lebensdauer am Atomstrahl nach der Methode von KOENIG und ELLET⁵), die der WIEN'schen Kanalstrahlmethode⁶) analog ist, bei der genannten Linie einen besonders grossen Effekt. Für Zn-Atome beträgt nämlich z. B. bei 400° C die mittlere thermische Geschwindigkeit rund $5 \cdot 10^4$ cm/sec, so dass der von ihnen während der mittleren Lebensdauer von $2,6 \cdot 10^{-5}$ sec zurückgelegte Weg etwa 1,3 cm lang ist. Der zu erwartende Effekt beträgt somit rund das zehnfache des am Cd gemessenen.

512

¹) N. PONOMAREV und A. TERENIN, Zeitschr. f. Phys. 37, p. 95, 1926.

²) Bei Zn wurde 4-6 mal länger belichtet als bei Cd.

³) P. SOLEILLET, C. R. 187, p. 723, 1928.

⁴) Die Feldstärken, bei denen SOLEILLET seine Polarisationsmessungen ausführte, betrugen höchstens einige Tausendstel Gauss.

⁵) H. D. KOENIG und A. ELLET, Phys. Rev. **39**, p. 576, 1932.

⁶) W. WIEN, Ann. d. Phys. **60**, p. 597, 1919; **66**, p. 229, 1921; **73**, p. 483, 1924.

Die mittlere Lebensdauer des 2 ${}^{3}P_{1}$ -Zustandes der Atome von Hg, Cd und Zn beträgt für

Hg $T = 1 \cdot 10^{-7} \sec^{1}$) Cd $T = 2,5 \cdot 10^{-6} \sec^{2}$) Zn $T = 2,6 \cdot 10^{-5} \sec^{2}$.

Daraus ist ersichtlich, dass die Lebensdauer des $2 {}^{3}P_{1}$ -Zustandes von Zn weitaus am grössten ist, nämlich rund 10 mal grösser als diejenige des Cd und etwa 260 mal grösser als diejenige von Hg. Schon von PASCHEN³) ist an Emissionsspektren für die Interkombinationslinie der Gruppe Hg, Cd und Zn eine Intensitätsabnahme im gleichen Sinne qualitativ festgestellt worden.

Herrn Prof. Dr. Edgar Meyer danke ich herzlich für sein stetes Interesse, durch das er die Entwicklung dieser Arbeit gefördert hat, sowie für die bereitwillige Überlassung der Institutsmittel. Herrn Dr. Marcel Schein bin ich für seine wertvollen Anregungen und Ratschläge zu grossem Dank verpflichtet und Herrn Hans A. Schwarzenbach danke ich bestens für seine stetige Hilfsbereitschaft während meiner Arbeiten.

Physikalisches Institut der Universität Zürich.

¹) R. W. WCOD und A. ELLET, Proc. Roy. Soc. (A), **103**, p. 396 1923, vgl. J. A. ELDRIGE, Phys. Rev. **23**, p. 772, 1924; W. WIEN, Ann. d. Phys. **73**, p. 483, 1924; V. v. KEUSSLER, Phys. Zeitschr. **27**, p. 313, 1926; H. KOPFERMANN und W. TIETZE, a. a. O.; W. HANLE, Zeitschr. f. Phys. **30**, p. 93, 1924.

²) H. D. KOENIG und A. ELLET, a. a. O.; P. SOLEILLET, C. R. 187, p. 212, 1928.

³) F. PASCHEN, Drude's Ann. 35, p. 860, 1911.